Data recovery with sub-Nyquist sampling: fundamental limit and a detection algorithm

亚奈奎斯特采样的数据恢复: 性能极限与恢复算法

Abstract

While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no information loss, the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain circumstances. Previous works on sub-Nyquist sampling achieved dimensionality reduction mainly by transforming the signal in certain ways. However, the underlying structure of the sub-Nyquist sampled signal has not yet been fully exploited. In this paper, we study the fundamental limit and the method for recovering data from the sub-Nyquist sample sequence of a linearly modulated baseband signal. In this context, the signal is not eligible for dimension reduction, which makes the information loss in sub-Nyquist sampling inevitable and turns the recovery into an under-determined linear problem. The performance limits and data recovery algorithms of two different sub-Nyquist sampling schemes are studied. First, the minimum normalized Euclidean distances for the two sampling schemes are calculated which indicate the performance upper bounds of each sampling scheme. Then, with the constraint of a finite alphabet set of the transmitted symbols, a modified time-variant Viterbi algorithm is presented for efficient data recovery from the sub-Nyquist samples. The simulated bit error rates (BERs) with different sub-Nyquist sampling schemes are compared with both their theoretical limits and their Nyquist sampling counterparts, which validates the excellent performance of the proposed data recovery algorithm.

摘要

奈奎斯特频率是一般带限信号进行无损采样的采样率下界, 然而在某些情景中, 亚奈奎斯特频率也足以进行无损采样和信号恢复. 以往对亚奈奎斯特采样的研究主要集中在利用信号变换来降低信号维度, 但是亚奈奎斯特采样信号的结构并没有得到充分研究. 本文针对线性调制基带信号的亚奈奎斯特采样, 研究其信号恢复性能极限与算法. 该问题中, 原信号维度无法降低, 因此亚奈奎斯特采样不可避免会带来信息损失, 信号恢复也变成一个欠定线性问题. 本文采用两种亚奈奎斯特采样方法对线性调制基带信号进行采样, 分别研究了两种采样方法下的性能极限和信号恢复算法. 首先, 针对两种亚奈奎斯特采样方法, 分别计算了采样序列之间的最小归一化欧氏距离, 以此作为最优性能的指标. 然后, 在基带信号有限符号集的限制条件下, 采用改进的时变维特比算法从亚奈奎斯特采样序列中恢复原信号. 将仿真得到的亚奈奎斯特采样的误比特率与其性能的理论极限比较, 并与奈奎斯特采样性能对比, 验证了时变维特比算法在信号恢复问题中的优良性能.

This is a preview of subscription content, access via your institution.

References

  1. Anderson JB, Rusek F, Öwall V, 2013. Faster-than-Nyquist signaling. Proc IEEE, 101(8):1817–1830. https://doi.org/10.1109/JPROC.2012.2233451

    Article  Google Scholar 

  2. Chen YX, Eldar YC, Goldsmith AJ, 2013. Shannon meets Nyquist: capacity of sampled Gaussian channels. IEEE Trans Inform Theory, 59(8):4889–4914. https://doi.org/10.1109/TIT.2013.2254171

    MathSciNet  Article  Google Scholar 

  3. Domínguez-Jiménez ME, González-Prelcic N, Vazquez-Vilar G, et al., 2012. Design of universal multicoset sampling patterns for compressed sensing of multiband sparse signals. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.3337–3340. https://doi.org/10.1109/ICASSP.2012.6288630

    Google Scholar 

  4. Fan JC, Guo SJ, Zhou XW, et al., 2017. Faster-than-Nyquist signaling: an overview. IEEE Access, 5:1925–1940. https://doi.org/10.1109/ACCESS.2017.2657599

    Article  Google Scholar 

  5. Feng P, Bresler Y, 1996. Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. Proc IEEE Int Conf on Acoustics, Speech, and Signal Processing, 3:1688–1691. https://doi.org/10.1109/ICASSP.1996.544131

    Google Scholar 

  6. Forney GD, 1973. The Viterbi algorithm. Proc IEEE, 61(3): 268–278. https://doi.org/10.1109/PROC.1973.9030

    MathSciNet  Article  Google Scholar 

  7. Goldsmith A, 2005. Wireless Communications. Cambridge University Press, Cambridge, USA, p.327-340. https://doi.org/10.1017/CBO9780511841224

    Google Scholar 

  8. Hajela D, 1990. On computing the minimum distance for faster than Nyquist signaling. IEEE Trans Inform Theory, 36(2):289–295. https://doi.org/10.1109/18.52475

    MathSciNet  Article  Google Scholar 

  9. Herley C, Wong PW, 1999. Minimum rate sampling and reconstruction of signals with arbitrary frequency support. IEEE Trans Inform Theory, 45(5):1555–1564. https://doi.org/10.1109/18.771158

    MathSciNet  Article  Google Scholar 

  10. Landau HJ, 1967. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math, 117(1):37–52. https://doi.org/10.1007/BF02395039

    MathSciNet  Article  Google Scholar 

  11. Liveris AD, Georghiades CN, 2003. Exploiting faster-than-Nyquist signaling. IEEE Trans Commun, 51(9):1502–1511. https://doi.org/10.1109/TCOMM.2003.816943

    Article  Google Scholar 

  12. Lu YM, Do MN, 2008. A theory for sampling signals from a union of subspaces. IEEE Trans Signal Process, 56(6): 2334–2345. https://doi.org/10.1109/TSP.2007.914346

    MathSciNet  Article  Google Scholar 

  13. Luo X, Zhang Z, 2019. Data recovery from sub-Nyquist sampled signals: fundamental limit and detection algorithm. Proc 11th Int Conf on Wireless Communications and Signal Processing, p.1–6. https://doi.org/10.1109/WCSP.2019.8927914

    Google Scholar 

  14. Mazo JE, 1975. Faster-than-Nyquist signaling. Bell Syst Techn J, 54(8):1451–1462. https://doi.org/10.1002/j.1538-7305.1975.tb02043.x

    MathSciNet  Article  Google Scholar 

  15. Mazo JE, Landau HJ, 1988. On the minimum distance problem for faster-than-Nyquist signaling. IEEE Trans Inform Theory, 34(6):1420–1427. https://doi.org/10.1109/18.21281

    Article  Google Scholar 

  16. Mishali M, Eldar YC, 2009. Blind multiband signal reconstruction: compressed sensing for analog signals. IEEE Trans Signal Process, 57(3):993–1009. https://doi.org/10.1109/TSP.2009.2012791

    MathSciNet  Article  Google Scholar 

  17. Mishali M, Eldar YC, 2010. From theory to practice: sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Top Signal Process, 4(2):375–391. https://doi.org/10.1109/JSTSP.2010.2042414

    Article  Google Scholar 

  18. Mishali M, Eldar YC, Elron AJ, 2011. Xampling: signal acquisition and processing in union of subspaces. IEEE Trans Signal Process, 59(10):4719–4734. https://doi.org/10.1109/TSP.2011.2161472

    MathSciNet  Article  Google Scholar 

  19. Scoular SC, Fitzgerald WJ, 1992. Periodic nonuniform sampling of multiband signals. Signal Process, 28(2):195–200. https://doi.org/10.1016/0165-1684(92)90035-U

    Article  Google Scholar 

  20. Sun HJ, Nallanathan A, Wang CX, et al., 2013. Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel Commun, 20(2):74–81. https://doi.org/10.1109/MWC.2013.6507397

    Article  Google Scholar 

  21. Tropp JA, Laska JN, Duarte MF, et al., 2010. Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans Inform Theory, 56(1):520–544. https://doi.org/10.1109/TIT.2009.2034811

    MathSciNet  Article  Google Scholar 

  22. Venkataramani R, Bresler Y, 2001. Optimal sub-Nyquist nonuniform sampling and reconstruction for multiband signals. IEEE Trans Signal Process, 49(10):2301–2313. https://doi.org/10.1109/78.950786

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Xiqian LUO and Zhaoyang ZHANG designed the research. Xiqian LUO did the simulation and drafted the manuscript. Zhangyang ZHANG revised the manuscript. Xiqian LUO revised and finalized the paper.

Corresponding author

Correspondence to Zhaoyang Zhang 张朝阳.

Ethics declarations

Xiqian LUO and Zhaoyang ZHANG declare that they have no conflict of interest.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61725104 and 61631003) and Huawei Technologies Co., Ltd. (Nos. HF2017010003, YB2015040053, and YB2013120029)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Zhang, Z. Data recovery with sub-Nyquist sampling: fundamental limit and a detection algorithm. Front Inform Technol Electron Eng 22, 232–243 (2021). https://doi.org/10.1631/FITEE.1900320

Download citation

Key words

  • Nyquist-Shannon sampling theorem
  • Sub-Nyquist sampling
  • Minimum Euclidean distance
  • Under-determined linear problem
  • Time-variant Viterbi algorithm

关键词

  • 奈奎斯特采样定理
  • 亚奈奎斯特采样
  • 最小欧式距离
  • 欠定线性问题
  • 时变维特比算法

CLC number

  • TN911.72