A tutorial on 5G and the progress in China

  • Shan-zhi Chen
  • Shao-li Kang


5G has been developing at high speed since 2012 and has become a global economic driver. In this paper, we offer a survey of 5G covering visions, requirements, roadmap, key technologies, standardization, frequency management, technology trials, industrial ecology, and a list of main 5G contributors. We also point out the contributions to 5G from China, aiming to be ‘globally leading in 5G’ by acting as a main 5G contributor in standardization and promoting/enhancing the Chinese 5G industry. Finally, progress on 5G is reviewed mixed with our rethinking of 5G.

Key words

5G IMT-2020 Key technology Standardization Field trial 

CLC number




We would like to thank Dr. Yue-min CAI from Datang Telecom Group, Drs. Bo HU and Yan SHI from Beijing University of Posts and Telecommunications for their help in preparing related materials, and Prof. Dake LIU from Beijing Institute of Technology for his valuable comments and also contribution on IC challenges.


  1. 3GPP, 2016a. Non-orthogonal multiple access candidate for NR. R1-163992. Samsung.Google Scholar
  2. 3GPP, 2016b. RSMA. R1-164688. Qualcomm Incorporated.Google Scholar
  3. Agyapong PK, Iwamura M, Staehle D, et al., 2014. Design considerations for a 5G network architecture. IEEE Commun Mag, 52(11):65–75. CrossRefGoogle Scholar
  4. Cai YL, Qin ZJ, Cui FY, et al., 2018. Modulation and multiple access for 5G networks. IEEE Commun Surv Tutor, 20(1):629–646. CrossRefGoogle Scholar
  5. Chen D, Qu DM, Jiang T, et al., 2013. Prototype filter optimization to minimize stopband energy with NPR constraint for filter bank multicarrier modulation systems. IEEE Trans Signal Process, 61(1):159–169. MathSciNetCrossRefGoogle Scholar
  6. Chen SZ, Zhao J, 2014. The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun Mag, 52(5):36–43. CrossRefGoogle Scholar
  7. Chen SZ, Sun SH, Wang YM, et al., 2015a. A comprehensive survey of TDD-based mobile communication systems from TD-SCDMA 3G to TD-LTE(A) 4G and 5G directions. China Commun, 12(2):40–60. CrossRefGoogle Scholar
  8. Chen SZ, Zhao J, Ai M, et al., 2015b. Virtual RATs and a flexible and tailored radio access network evolving to 5G. IEEE Commun Mag, 53(6):52–58. CrossRefGoogle Scholar
  9. Chen SZ, Zhang P, Tafazolli R, 2016a. Enabling technologies for beyond TD-LTE-Advanced and 5G wireless communications. China Commun, 13(6): iv-v. Google Scholar
  10. Chen SZ, Sun SH, Gao QB, et al., 2016b. Adaptive beamforming in TDD-based mobile communication systems: state of the art and 5G research directions. IEEE Wirel Commun, 23(6):81–87. CrossRefGoogle Scholar
  11. Chen SZ, Qin F, Hu B, et al., 2016c. User-centric ultra-dense networks for 5G: challenges, methodologies, and directions. IEEE Wirel Commun, 23(2):78–85. CrossRefGoogle Scholar
  12. Chen SZ, Hu JL, Shi Y, et al., 2016d. LTE-V: a TD-LTE-based V2X solution for future vehicular network. IEEE Internet Things J, 3(6):997–1005. CrossRefGoogle Scholar
  13. Chen SZ, Ren B, Gao QB, et al., 2017a. Pattern division multiple access—a novel nonorthogonal multiple access for fifth-generation radio networks. IEEE Trans Veh Technol, 66(4):3185–3196. CrossRefGoogle Scholar
  14. Chen SZ, Hu JL, Shi Y, et al., 2017b. Vehicle-to-everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun Stand Mag, 1(2):70–76. CrossRefGoogle Scholar
  15. Chen Y, Bayesteh A, Wu YQ, et al., 2018. Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun Mag, 56(3): 19–27. CrossRefGoogle Scholar
  16. Dai LL, Wang BC, Yuan YF, et al., 2015. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag, 53(9):74–81. CrossRefGoogle Scholar
  17. Ding ZG, Lei XF, Karagiannidis GK, et al., 2017. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181–2195. CrossRefGoogle Scholar
  18. Ge XH, Tu S, Mao GQ, et al., 2016. 5G ultra-dense cellular networks. IEEE Wirel Commun, 23(1):72–79. CrossRefGoogle Scholar
  19. IMT-2020(5G) Promotion Group, 2014. 5G vision and requirements. White Paper.Google Scholar
  20. IMT-2020(5G) Promotion Group, 2015a. 5G network technology architecture. White Paper.Google Scholar
  21. IMT-2020(5G) Promotion Group, 2015b. 5G wireless technology architecture. White Paper.Google Scholar
  22. IMT-2020(5G) Promotion Group, 2017. 5G economic and social impact. White Paper.Google Scholar
  23. ITU-R, 2014. Future technology trends of terrestrial IMT systems. ITU-R M.2320-0.Google Scholar
  24. ITU-R, 2015. IMT vision—framework and overall objectives of the future development of IMT for 2020 and beyond. ITU-R M.2083-0.Google Scholar
  25. Larsson EG, Edfors O, Tufvesson F, et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 52(2):186–195. CrossRefGoogle Scholar
  26. Marzetta TL, 2010. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 9(11):3590–3600. CrossRefGoogle Scholar
  27. NGMN Alliance, 2015. NGMN 5G white paper.Google Scholar
  28. Nikopour H, Baligh H, 2013. Sparse code multiple access. Proc 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.332–336. Google Scholar
  29. Qi XT, Wu N, Huang H, et al., 2017. A factor graph-based iterative detection of faster-than-Nyquist signaling in the presence of phase noise and carrier frequency offset. Dig Signal Process, 63:25–34. CrossRefGoogle Scholar
  30. Takahashi H, 2016. Study on new radio access technology—physical layer aspects. 3GPP Report TR38.802.Google Scholar
  31. Tian KD, Liu RK, Wang RX, 2016. Joint successive cancellation decoding for bit-interleaved polar coded modulation. IEEE Commun Lett, 20(2):224–227. CrossRefGoogle Scholar
  32. Vakilian V, Wild T, Schaich F, et al., 2013. Universal-filtered multi-carrier technique for wireless systems beyond LTE. Proc IEEE Globalcom Workshop, p.223–228. Google Scholar
  33. Wang CX, Haider F, Gao XQ, et al., 2014. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 52(2):122–130. CrossRefGoogle Scholar
  34. Wang HC, Chen SZ, Xu H, et al., 2015. SoftNet: a software defined decentralized mobile network architecture toward 5G. IEEE Network, 29(2):16–22. CrossRefGoogle Scholar
  35. Wang HC, Chen SZ, Ai M, et al., 2017. Localized mobility management for 5G ultra dense network. IEEE Trans Veh Technol, 66(9):8535–8552. CrossRefGoogle Scholar
  36. Wunder G, Jung P, Kasparick M, et al., 2014. 5GNOW: nonorthogonal, asynchronous waveforms for future mobile applications. IEEE Commun Mag, 52(2):97–105. CrossRefGoogle Scholar
  37. Yuan ZF, Yu GH, Li WM, et al., 2016. Multi-user shared access for Internet of Things. Proc 83rd Vehicular Technology Conf, p.1–5. Google Scholar
  38. Zhu M, Guo Q, Bai BM, et al., 2016. Reliability-based joint detection-decoding algorithm for nonbinary LDPC-coded modulation systems. IEEE Trans Commun, 64(1):2–14. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Wireless Mobile CommunicationsChina Academy of Telecommunications Technology (CATT)BeijingChina

Personalised recommendations