Embracing non-orthogonalmultiple access in future wireless networks

  • Zhi-guo Ding
  • Mai Xu
  • Yan Chen
  • Mu-gen Peng
  • H. Vincent Poor


This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.

Key words

Non-orthogonal multiple access (NOMA) Wireless caching Multiple-input multiple-output (MIMO) NOMA Cooperative NOMA Millimeter-wave networks Visible light communications (VLC) 

CLC number



  1. Alkhateeb A, Nam YH, Zhang J, et al., 2016. Massive MIMO combining with switches. IEEE Wirel Commun Lett, 5(3):232–235. CrossRefGoogle Scholar
  2. Bastug E, Bennis M, Debbah M, 2014. Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun Mag, 52(8):82–89. CrossRefGoogle Scholar
  3. Boyd S, Vandenberghe L, 2004. Convex Optimization. Cambridge University Press, New York, USA.CrossRefzbMATHGoogle Scholar
  4. Cai D, Fan P, Lei X, et al., 2016. Multi-dimensional SCMA codebook design based on constellation rotation and interleaving. IEEE 83rd Vehicular Technology Conf, p.1–5. Google Scholar
  5. Caus M, Vázquez MA, Pérez-Neira A, 2016. NOMA and interference limited satellite scenarios. 50th Asilomar Conf on Signals, Systems and Computers, p.497–501. Google Scholar
  6. Chen S, Ren B, Gao Q, et al., 2017a. Pattern division multiple access (PDMA)—a novel non-orthogonal multiple access for 5G radio networks. IEEE Trans Veh Technol, 66(4):3185–3196. CrossRefGoogle Scholar
  7. Chen S, Hu J, Shi Y, et al., 2017b. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G. IEEE Commun Stand Mag, 1(2):70–76. CrossRefGoogle Scholar
  8. Chen Y, Wang L, Ai Y, et al., 2017. Performance analysis of NOMA-SM in vehicle-to-vehicle massive MIMO channels. IEEE J Sel Areas Commun, 35(12):2653–2666. CrossRefGoogle Scholar
  9. Chen Z, Kountouris M, 2016. D2D caching vs. small cell caching: where to cache content in a wireless network? IEEE 17th Int Workshop on Signal Processing Advances in Wireless Communications, p.1–6. Google Scholar
  10. Chen Z, Ding Z, Dai X, et al., 2016a. On the application of quasi-degradation to MISO-NOMA downlink. IEEE Trans Signal Process, 64(23):6174–6189. MathSciNetCrossRefGoogle Scholar
  11. Chen Z, Ding Z, Xu P, et al., 2016b. Optimal precoding for a QoS optimization problem in two-user MISO-NOMA downlink. IEEE Commun Lett, 20(6):1263–1266. CrossRefGoogle Scholar
  12. Choi J, 2016a. Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun Lett, 20(10):2055–2058. CrossRefGoogle Scholar
  13. Choi J, 2016b. On the power allocation for MIMO-NOMA systems with layered transmissions. IEEE Trans Wirel Commun, 15(5):3226–3237. CrossRefGoogle Scholar
  14. Cover TM, Thomas JA, 2006. Elements of Information Theory. John Wiley and Sons, New Jersey, USA. Google Scholar
  15. Di B, Song L, Li Y, et al., 2017. Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems. IEEE J Sel Areas Commun, 35(10):2383–2397. CrossRefGoogle Scholar
  16. Diamantoulakis PD, Pappi KN, Ding Z, et al., 2016. Wireless-powered communications with non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(12): 8422–8436. CrossRefGoogle Scholar
  17. Ding Z, Poor HV, 2016. Design of massive-MIMO-NOMA with limited feedback. IEEE Signal Process Lett, 23(5):629–633. CrossRefGoogle Scholar
  18. Ding Z, Yang Z, Fan P, et al., 2014. On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett, 21(12):1501–1505. CrossRefGoogle Scholar
  19. Ding Z, Peng M, Poor HV, 2015. Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun Lett, 19(8):1462–1465. CrossRefGoogle Scholar
  20. Ding Z, Adachi F, Poor HV, 2016a. The application of MIMO to non-orthogonal multiple access. IEEE Trans Wirel Commun, 15(1):537–552. CrossRefGoogle Scholar
  21. Ding Z, Schober R, Poor HV, 2016b. A general MIMO framework for NOMA downlink and uplink transmissions based on signal alignment. IEEE Trans Wirel Commun, 15(6):4438–4454. CrossRefGoogle Scholar
  22. Ding Z, Fan P, Poor HV, 2016c. Impact of user pairing on 5G non-orthogonal multiple access downlink transmissions. IEEE Trans Veh Technol, 65(8):6010–6023. CrossRefGoogle Scholar
  23. Ding Z, Dai L, Poor HV, 2016d. MIMO-NOMA design for small packet transmission in the Internet of Things. IEEE Access, 4:1393–1405. CrossRefGoogle Scholar
  24. Ding Z, Dai H, Poor HV, 2016e. Relay selection for cooperative NOMA. IEEE Wirel Commun Lett, 5(4):416–419. CrossRefGoogle Scholar
  25. Ding Z, Liu Y, Choi J, et al., 2017a. Application of nonorthogonal multiple access in LTE and 5G networks. IEEE Commun Mag, 55(2):185–191. CrossRefGoogle Scholar
  26. Ding Z, Fan P, Karagiannidis G, et al., 2017b. NOMA assisted wireless caching: strategies and performance analysis. Google Scholar
  27. Ding Z, Dai L, Schober R, et al., 2017c. NOMA meets finite resolution analog beamforming in massive MIMO and millimeter-wave networks. IEEE Commun Lett, 21(8):1879–1882. CrossRefGoogle Scholar
  28. Ding Z, Fan P, Poor HV, 2017d. Random beamforming in millimeter-wave NOMA networks. IEEE Access, 5:7667–7681. CrossRefGoogle Scholar
  29. Ding Z, Zhao Z, Peng M, et al., 2017e. On the spectral efficiency and security enhancements of NOMA assisted multicast-unicast streaming. IEEE Trans Commun, 65(7):3151–3163. CrossRefGoogle Scholar
  30. Ding Z, Lei X, Karagiannidis GK, et al., 2017f. A survey on non-orthogonal multiple access for 5G networks: research challenges and future trends. IEEE J Sel Areas Commun, 35(10):2181–2195. CrossRefGoogle Scholar
  31. Ding Z, Fan P, Poor HV, 2018. On the coexistence between full-duplex and NOMA. IEEE Wirel Commun Lett, in press. Google Scholar
  32. Elbamby MS, Bennis M, Saad W, et al., 2017. Resource optimization and power allocation in full duplex non-orthogonal multiple access (FD-NOMA) networks. IEEE J Sel Areas Commun, 35(12):2860–2873. CrossRefGoogle Scholar
  33. Fay L, Michael L, Gómez-Barquero D, et al., 2016. An overview of the ATSC 3.0 physical layer specification. IEEE Trans Broadcast, 62(1):159–171. CrossRefGoogle Scholar
  34. Foschini GJ, Gans MJ, 1998. On limits of wireless communication in a fading environment when using multiple antennas. Wirel Pers Commun, 6(3):311–335. CrossRefGoogle Scholar
  35. Gao X, Dai L, Sun Y, et al., 2017. Machine learning inspired energy-efficient hybrid precoding for mmWave massive MIMO systems. IEEE Int Conf on Communications, p.1–6. Google Scholar
  36. Golrezaei N, Molisch AF, Dimakis AG, et al., 2013. Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun Mag, 51(4):142–149. CrossRefGoogle Scholar
  37. Hanif MF, Ding Z, Ratnarajah T, et al., 2016. A minorization-maximization method for optimizing sum rate in non-orthogonal multiple access systems. IEEE Trans Signal Process, 64(1):76–88. MathSciNetCrossRefGoogle Scholar
  38. Heath RW, González-Prelcic N, Rangan S, et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Topics Signal Process, 10(3):436–453. CrossRefGoogle Scholar
  39. Ho IWH, Leung KK, Polak JW, 2011. Stochastic model and connectivity dynamics for VANETs in signalized road systems. IEEE/ACM Trans Network, 19(1):195–208. CrossRefGoogle Scholar
  40. Kim JB, Lee IH, 2015. Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun Lett, 19(11):2037–2040. CrossRefGoogle Scholar
  41. Komine T, Nakagawa M, 2004. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron, 50(1):100–107. CrossRefGoogle Scholar
  42. Kulkarni MN, Ghosh A, Andrews JG, 2016. A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans Commun, 64(5):1952–1967. CrossRefGoogle Scholar
  43. Lee J, Quek TQS, 2017. Hybrid full-/half-duplex system analysis in heterogeneous wireless network. IEEE Trans Wirel Commun, 14(5):2883–2895. Google Scholar
  44. Liu L, Zhang R, Chua KC, 2013. Wireless information transfer with opportunistic energy harvesting. IEEE Trans Wirel Commun, 12(1):288–300. CrossRefGoogle Scholar
  45. Liu Y, Ding Z, Elkashlan M, et al., 2016. Cooperative nonorthogonal multiple access with simultaneous wireless information and power transfer. IEEE J Sel Areas Commun, 34(4):938–953. CrossRefGoogle Scholar
  46. Luo S, Teh KC, 2017. Adaptive transmission for cooperative NOMA system with buffer-aided relaying. IEEE Commun Lett, 21(4):937–940. CrossRefGoogle Scholar
  47. Lv L, Ni Q, Ding Z, et al., 2017. Application of nonorthogonal multiple access in cooperative spectrumsharing networks over Nakagami-m fading channels. IEEE Trans Veh Technol, 66(6):5506–5511. CrossRefGoogle Scholar
  48. Maddah-Ali MA, Niesen U, 2014. Fundamental limits of caching. IEEE Trans Inform Theory, 60(5):2856–2867. MathSciNetCrossRefzbMATHGoogle Scholar
  49. Marshoud H, Kapinas VM, Karagiannidis GK, et al., 2016. Non-orthogonal multiple access for visible light communications. IEEE Photon Technol Lett, 28(1):51–54. CrossRefGoogle Scholar
  50. Mitra R, Bhatia V, 2017. Precoded Chebyshev-NLMSbased pre-distorter for nonlinear LED compensation in NOMA-VLC. IEEE Trans Commun, 65(11):4845–4856. CrossRefGoogle Scholar
  51. Molina-Masegosa R, Gozalvez J, 2017. LTE-V for sidelink 5G V2X vehicular communications: a new 5G technology for short-range vehicle-to-everything communications. IEEE Veh Technol Mag, 12(4):30–39. CrossRefGoogle Scholar
  52. Nikopour H, Baligh H, 2013. Sparse code multiple access. IEEE 24th Int Symp on Personal Indoor and Mobile Radio Communications, p.332–336. Google Scholar
  53. Nonaka N, Benjebbour A, Higuchi K, 2014. System-level throughput of NOMA using intra-beam superposition coding and SIC in MIMO downlink when channel estimation error exists. IEEE Int Conf on Communication Systems, p.202–206. Google Scholar
  54. NTT Docomo Inc., 2014. 5G Radio Access: Requirements, Concepts and Technologies.Google Scholar
  55. NTT Docomo Inc., 2017. World’s First Successful 5G Trial Using Smartphone-Sized NOMA Chipset-Embedded Device to Increase Spectral Efficiency. Google Scholar
  56. Pan G, Ye J, Ding Z, 2017a. Secure hybrid VLC-RF systems with light energy harvesting. IEEE Trans Commun, 65(10):4348–4359. Google Scholar
  57. Pan G, Ye J, Ding Z, 2017b. On secure VLC systems with spatially random terminals. IEEE Commun Lett, 21(3):492–495. CrossRefGoogle Scholar
  58. Proakis J, 2000. Digital Communications. McGraw-Hill, New York, USA.zbMATHGoogle Scholar
  59. Saito Y, Benjebbour A, Kishiyama Y, et al., 2013. System-level performance evaluation of downlink nonorthogonal multiple access (NOMA). IEEE 24th IntSymp on Personal Indoor and Mobile Radio Communications, p.611–615. Google Scholar
  60. Sun Y, Ng DWK, Ding Z, et al., 2017. Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans Commun, 65(3):1077–1091. CrossRefGoogle Scholar
  61. Taherzadeh M, Nikopour H, Bayesteh A, et al., 2014. SCMA codebook design. IEEE 80th Vehicular Technology Conf, p.1–5. Google Scholar
  62. techUK, 2015. 5G Innovation Opportunities—a Discussion Paper.Google Scholar
  63. Verdú S, 1998. Multiuser Detection. Cambridge University Press, Cambridge, UK.zbMATHGoogle Scholar
  64. Wei Z, Yuan J, Ng D, et al., 2016. A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. ZTE Commun, 14(4):17–25.Google Scholar
  65. Wei Z, Dai L, Ng DWK, et al., 2017. Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme. IEEE 85th Vehicular Technology Conf, p.1–7. Google Scholar
  66. Xu D, Ren P, Du Q, et al., 2017. Combat eavesdropping by full-duplex technology and signal transformation in non-orthogonal multiple access transmission. IEEE Int Conf on Communications, p.1–6. Google Scholar
  67. Xu P, Ding Z, Dai X, et al., 2015. A new evaluation criterion for non-orthogonal multiple access in 5G software defined networks. IEEE Access, 3:1633–1639. CrossRefGoogle Scholar
  68. Xu P, Yuan Y, Ding Z, et al., 2016. On the outage performance of non-orthogonal multiple access with 1-bit feedback. IEEE Trans Wirel Commun, 15(10):6716–6730. CrossRefGoogle Scholar
  69. Xu X, Tao M, 2017. Modeling, analysis, and optimization of coded caching in small-cell networks. IEEE Trans Commun, 65(8):3415–3428. Google Scholar
  70. Yakou K, Higuchi K, 2015. Downlink NOMA with SIC using unified user grouping for non-orthogonal user multiplexing and decoding order. Int Symp on Intelligent Signal Processing and Communication Systems, p.508–513. Google Scholar
  71. Yang Z, Ding Z, Fan P, et al., 2016a. A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans Wirel Commun, 15(11):7244–7257. CrossRefGoogle Scholar
  72. Yang Z, Cui J, Lei X, et al., 2016b. Impact of factor graph on average sum rate for uplink sparse code multiple access systems. IEEE Access, 4:6585–6590. CrossRefGoogle Scholar
  73. Yang Z, Ding Z, Fan P, et al., 2016c. On the performance of non-orthogonal multiple access systems with partial channel information. IEEE Trans Commun, 64(2):654–667. CrossRefGoogle Scholar
  74. Yang Z, Ding Z, Wu Y, et al., 2017. Novel relay selection strategies for cooperative NOMA. IEEE Trans Veh Technol, 66(11):10114–10123. CrossRefGoogle Scholar
  75. Yin L, Popoola WO, Wu X, et al., 2016. Performance evaluation of non-orthogonal multiple access in visible light communication. IEEE Trans Commun, 64(12):5162–5175. CrossRefGoogle Scholar
  76. Yu L, Fan P, Ma Z, et al., 2016. An optimized design of irregular SCMA codebook based on rotated angles and EXIT chart. IEEE 84th Vehicular Technology Conf, p.1–5. Google Scholar
  77. Yu L, Fan P, Lei X, et al., 2017. BER analysis of SCMA systems with codebooks based on star-QAM signaling constellations. IEEE Commun Lett, 21(9):1925–1928. CrossRefGoogle Scholar
  78. Zeng M, Yadav A, Dobre OA, et al., 2017. Capacity comparison between MIMO-NOMA and MIMO-OMA with multiple users in a cluster. IEEE J Sel Areas Commun, 35(10):2413–2424. CrossRefGoogle Scholar
  79. Zhang D, Liu Y, Ding Z, et al., 2017. Performance analysis of non-regenerative massive-MIMO-NOMA relay systems for 5G. IEEE Trans Commun, 65(11):4777–4790. CrossRefGoogle Scholar
  80. Zhang L, Li W, Wu Y, et al., 2016. Layered-divisionmultiplexing: theory and practice. IEEE Trans Broadcast, 62(1):216–232. CrossRefGoogle Scholar
  81. Zhang L, Liu J, Xiao M, et al., 2017. Performance analysis and optimization in downlink NOMA systems with cooperative full-duplex relaying. IEEE J Sel Areas Commun, 35(10):2398–2412. CrossRefGoogle Scholar
  82. Zhang X, Gao Q, Gong C, et al., 2017. User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun Lett, 21(4):777–780. CrossRefGoogle Scholar
  83. Zhang Y, Wang HM, Yang Q, et al., 2016. Secrecy sum rate maximization in non-orthogonal multiple access. IEEE Commun Lett, 20(5):930–933. CrossRefGoogle Scholar
  84. Zhang Y, Wang HM, Zheng TX, et al., 2017. Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans Veh Technol, 66(3):2852–2857. CrossRefGoogle Scholar
  85. Zhang Z, Ma Z, Xiao M, et al., 2017a. Full-duplex deviceto-device aided cooperative non-orthogonal multiple access. IEEE Trans Veh Technol, 66(5):4467–4471. Google Scholar
  86. Zhang Z, Ma Z, Xiao Y, et al., 2017b. Non-orthogonal multiple access for cooperative multicast millimeter wave wireless networks. IEEE J Sel Areas Commun, 35(8):1794–1808. CrossRefGoogle Scholar
  87. Zhong C, Zhang Z, 2016. Non-orthogonal multiple access with cooperative full-duplex relaying. IEEE Commun Lett, 20(12):2478–2481. CrossRefGoogle Scholar
  88. Zhou GT, Viberg M, McKelvey T, 2003. A first-order statistical method for channel estimation. IEEE Signal Process Lett, 10(3):57–60. CrossRefGoogle Scholar
  89. Zhu X, Jiang C, Kuang L, et al., 2017. Non-orthogonal multiple access based integrated terrestrial-satellite networks. IEEE J Sel Areas Commun, 35(10):2253–2267. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  2. 2.School of Electrical and Electronic Engineeringthe University of ManchesterManchesterUK
  3. 3.School of Electronic and Information EngineeringBeihang UniversityBeijingChina
  4. 4.Huawei Technologies Co., Ltd.ShanghaiChina
  5. 5.Institute of TelecommunicationsBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations