A platform of digital brain using crowd power



A powerful platform of digital brain is proposed using crowd wisdom for brain research, based on the computational artificial intelligence model of synthesis reasoning and multi-source analogical generating. The design of the platform aims to make it a comprehensive brain database, a brain phantom generator, a brain knowledge base, and an intelligent assistant for research on neurological and psychiatric diseases and brain development. Using big data, crowd wisdom, and high performance computers may significantly enhance the capability of the platform. Preliminary achievements along this track are reported.


Artificial intelligence Digital brain Synthesis reasoning Multi-source analogical generating Crowd wisdom Deducing Neuroimaging 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Special thanks to Professor Yunhe Pan for the inspiring meeting and discussion in 2014, which initialized this work.


  1. Amunts K, Schleicher A, Bürgel U, et al., 1999. Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol, 412(2):319–341. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2<319::AID-CNE10>3.0.CO;2-7CrossRefGoogle Scholar
  2. Arnold JB, Liow JS, Schaper KA, et al., 2001. Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects. NeuroImage, 13(5):931–943. https://doi.org/10.1006/nimg.2001.0756CrossRefGoogle Scholar
  3. Aubert-Broche B, Evans AC, Collins L, 2006. A new improved version of the realistic digital brain phantom. NeuroImage, 32(1):138–145. https://doi.org/10.1016/j.neuroimage.2006.03.052CrossRefGoogle Scholar
  4. Baars BJ, Gage NM, 2010. Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience (2nd Ed.). Elsevier, p.591–616. https://doi.org/10.1016/B978-0-12-375070-9.00021-8Google Scholar
  5. Bansal R, Xu D, Peterson BS, 2005. Eigen function based coregistration of diffusion tensor images to anatomical magnetic resonance images. Proc Int Soc Magn Reson Med, 13:2332.Google Scholar
  6. Bansal R, Staib LH, Xu DR, et al., 2007. Statistical analyses of brain surfaces using gaussian random fields on 2-D manifolds. IEEE Trans Med Imag, 26(1):46–57. https://doi.org/10.1109/TMI.2006.884187CrossRefGoogle Scholar
  7. Bansal R, Staib LH, Laine AF, et al., 2012. Anatomical brain images alone can accurately diagnose chronic neuropsy chiatric illnesses. PloS ONE, 7(12):e50698. https://doi.org/10.1371/journal.pone.0050698CrossRefGoogle Scholar
  8. Bansal R, Hao XJ, Liu F, et al., 2013. The effects of changing water content, relaxation times, and tissue contrast on tissue segmentation and measures of cortical anatomy in MR images. Magn Reson Imag, 31(10):1709–1730. https://doi.org/10.1016/j.mri.2013.07.017CrossRefGoogle Scholar
  9. Bastin ME, 1999. Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative crosscorrelation. Magn Reson Imag, 17(7):1011–1024. https://doi.org/10.1016/S0730-725X(99)00026-0CrossRefGoogle Scholar
  10. Bastin ME, 2001. On the use of the FLAIR technique to improve the correction of eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 19(7): 937–950. https://doi.org/10.1016/S0730-725X(01)00427-1CrossRefGoogle Scholar
  11. Bastin ME, Armitage PA, 2000. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging. Magn Reson Imag, 18(6):681–687. https://doi.org/10.1016/S0730-725X(00)00158-2CrossRefGoogle Scholar
  12. Belliveau JW, Kennedy DNJr, McKinstry RC, et al., 1991. Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032):716–719. https://doi.org/10.1126/science.1948051CrossRefGoogle Scholar
  13. Bohland JW, Bokil H, Allen CB, et al., 2009. The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PLoS ONE, 4(9):e7200. https://doi.org/10.1371/journal.pone.0007200CrossRefGoogle Scholar
  14. Bradley MM, Sabatinelli D, Lang PJ, et al., 2003. Activation of the visual cortex in motivated attention. Behav Neurosci, 117(2):369–380. https://doi.org/10.1037/0735-7044.117.2.369CrossRefGoogle Scholar
  15. Brown RW, Cheng YCN, Haacke EM, et al., 2014. Magnetic Resonance Imaging: Physical Principles and Sequence Design (2nd Ed.). Wiley Blackwell, New York. https://doi.org/10.1002/9781118633953CrossRefGoogle Scholar
  16. Davatzikos C, 1996a. Nonlinear registration of brain images using deformable models. Proc Workshop on Mathematical Methods in Biomedical Image Analysis, p.94–103. https://doi.org/10.1109/MMBIA.1996.534061CrossRefGoogle Scholar
  17. Davatzikos C, 1996b. Spatial normalization of 3D brain images using deformable models. J Comput Assist Tomogr, 20(4):656–665. https://doi.org/10.1097/00004728-199607000-00031MathSciNetCrossRefGoogle Scholar
  18. Davatzikos C, 1997. Spatial transformation and registration of brain images using elastically deformable models. Comput Vis Image Underst, 66(2):207–222. https://doi.org/10.1006/cviu.1997.0605CrossRefGoogle Scholar
  19. Davatzikos C, Genc A, Xu DR, et al., 2001. Voxel-based morphometry using the RAVENS maps: methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6):1361–1369. https://doi.org/10.1006/nimg.2001.0937CrossRefGoogle Scholar
  20. DeYoe EA, Carman GJ, Bandettini P, et al., 1996. Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS, 93(6):2382–2386. https://doi.org/10.1073/pnas.93.6.2382CrossRefGoogle Scholar
  21. Dubin M, Weissman M, Xu DR, et al., 2012. Identification of a circuit-based endophenotype for familial depression. Psych Res Neuroimag, 201(3):175–181. https://doi.org/10.1016/j.pscychresns.2011.11.007CrossRefGoogle Scholar
  22. Evans AC, 2006. The NIH MRI study of normal brain development. NeuroImage, 30(1):184–202. https://doi.org/10.1016/j.neuroimage.2005.09.068MathSciNetCrossRefGoogle Scholar
  23. Fagiolo G, Waldman A, Hajnal JV, 2008. A simple procedure to improve FMRIb software library brain extraction tool performance. Br J Radiol, 81(963):250–251. https://doi.org/10.1259/bjr/12956156CrossRefGoogle Scholar
  24. Fan LY, 2013. Development of Artifact-Free Imaging System and fMRI Research Paradigm for Creative Thinking in an MR-Compatible Environment. MS Thesis, East China Normal University, Shanghai, China (in Chinese).Google Scholar
  25. Fan LY, Fan XF, Luo WC, et al., 2014. An explorative fMRI study of human creative thinking using: a specially designed iCAD system. Acta Psychol Sin, 46(4):427–436 (in Chinese). https://doi.org/10.3724/SP.J.1041.2014.00427Google Scholar
  26. Hagmann P, Cammoun L, Gigandet X, et al., 2010. MR connectomics: principles and challenges. J Neurosci Methods, 194(1):34–45. https://doi.org/10.1016/j.jneumeth.2010.01.014CrossRefGoogle Scholar
  27. Hagoort P, 2005. On broca, brain, and binding: a new framework. Trends Cogn Sci, 9(9):416–423. https://doi.org/10.1016/j.tics.2005.07.004CrossRefGoogle Scholar
  28. Hao XJ, Xu DR, Bansal R, et al., 2013. Multimodal magnetic resonance imaging: the coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Map, 34(2):253–271. https://doi.org/10.1002/hbm.21440CrossRefGoogle Scholar
  29. Haselgrove JC, Moore JR, 1996. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med, 36(6):960–964. https://doi.org/10.1002/mrm.1910360620CrossRefGoogle Scholar
  30. Hsu JL, Leemans A, Bai CH, et al., 2008. Gender differences and age-related white matter changes of the human brain: a diffusion tensor imaging study. NeuroImage, 39(2):566–577. https://doi.org/10.1016/j.neuroimage.2007.09.017CrossRefGoogle Scholar
  31. Huster RJ, Westerhausen R, Kreuder F, et al., 2009. Hemispheric and gender related differences in the Midcingulum bundle: a DTI study. Human Brain Map, 30(2):383–391. https://doi.org/10.1002/hbm.20509CrossRefGoogle Scholar
  32. Jack CR Jr, Bernstein MA, Fox NC, et al., 2008. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imag, 27(4):685–691. https://doi.org/10.1002/jmri.21049CrossRefGoogle Scholar
  33. Jiang YW, Liu F, Fan MX, et al., 2017. Deducing magnetic resonance neuroimages based on knowledge from samples. Comput Med Imag Graph, 62:1–14. https://doi.org/10.1016/j.compmedimag.2017.07.005CrossRefGoogle Scholar
  34. Kanungo T, Mount DM, Netanyahu NS, et al., 2002. An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Patt Anal Mach Intell, 24(7):881–892. https://doi.org/10.1109/TPAMI.2002.1017616CrossRefGoogle Scholar
  35. Liu F, Peterson B, Duan Y, et al., 2006. Fast spin echo for T2 quantification at 3T. Proc 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p.2404.Google Scholar
  36. Liu F, Garland M, Duan YS, et al., 2008. Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. NeuroImage, 40(1):148–159. https://doi.org/10.1016/j.neuroimage.2007.11.021CrossRefGoogle Scholar
  37. Liu F, Garland M, Duan YS, et al., 2010. Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3 T. Methods, 50(3):147–156. https://doi.org/10.1016/j.ymeth.2009.03.019CrossRefGoogle Scholar
  38. Liu W, Liu XZ, Yang G, et al., 2012a. Improving the correction of eddy current-induced distortion in diffusion-weighted images by excluding signals from the cerebral spinal fluid. Comput Med Imag Graph, 36(7):542–551. https://doi.org/10.1016/j.compmedimag.2012.06.004CrossRefGoogle Scholar
  39. Liu W, Liu XZ, He XF, et al., 2012b. Spatial normalization of diffusion tensor images with voxel-wise reconstruction of the diffusion gradient direction. Proc 2nd Int Conf on Multimodal Brain Image Analysis, p.134–146. https://doi.org/10.1007/978-3-642-33530-3_11CrossRefGoogle Scholar
  40. Liu XZ, Yuan ZM, Zhu JM, et al., 2013. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm. Phys Med Biol, 58(23):8359–8378. https://doi.org/10.1088/0031-9155/58/23/8359CrossRefGoogle Scholar
  41. Lorenzi M, Ayache N, Frisoni G, et al., 2010. 4D registration of serial brain’s MR images: a robust measure of changes applied to Alzheimer’s disease. Miccai Workshop on Spatio-Temporal Image Analysis for Longitudinal and Time-Series Image Data.Google Scholar
  42. Lynch G, 1979. Representations in the brain. Science, 204(4394):762. https://doi.org/10.1126/science.204.4394.762CrossRefGoogle Scholar
  43. Maguire EA, 2001. Neuroimaging, memory and the human hippocampus. Rev Neurol, 157(8-9 Pt 1):791–794.Google Scholar
  44. Mak KK, Kong WY, Mak A, et al., 2013. Polymorphisms of the serotonin transporter gene and post-stroke depression: a meta-analysis. J Neurol Neurosurg Psych, 84(3):322–328. https://doi.org/10.1136/jnnp.2012-303791CrossRefGoogle Scholar
  45. Michelucci P, Dickinson JL, 2016. The power of crowds. Science, 351(6268):32–33. https://doi.org/10.1126/science.aad6499CrossRefGoogle Scholar
  46. Neeb H, Zilles K, Shah NJ, 2006. Fully-automated detection of cerebral water content changes: study of age-and genderrelated H2O patterns with quantitative MRI. NeuroImage, 29(3):910–922. https://doi.org/10.1016/j.neuroimage.2005.08.062CrossRefGoogle Scholar
  47. Ng HP, Ong SH, Foong KWC, et al., 2006. Medical image segmentation using k-means clustering and improved Watershed algorithm. IEEE Southwest Symp on Image Analysis and Interpretation, p.61–65. https://doi.org/10.1109/SSIAI.2006.1633722Google Scholar
  48. Nickel M, Murphy K, Tresp V, et al., 2016. A review of relational machine learning for knowledge graphs. Proc IEEE, 104(1):11–33. https://doi.org/10.1109/JPROC.2015.2483592CrossRefGoogle Scholar
  49. Packard MG, White NM, 1991. Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci, 105(2):295–306. https://doi.org/10.1037/0735-7044.105.2.295CrossRefGoogle Scholar
  50. Pan YH, 1996. The synthesis reasoning. Patt Recogn Artif Intell, 9(3):201–208 (in Chinese).Google Scholar
  51. Pan YH, 1997. Intelligent CAD Methodology and Modeling. Science Press, Beijing, China (in Chinese).Google Scholar
  52. Peterson BS, Warnera V, Bansal R, et al., 2009. Cortical thinning in persons at increased familial risk for major depression. PNAS, 106(15):6273–6278. https://doi.org/10.1073/pnas.0805311106CrossRefGoogle Scholar
  53. Plessen KJ, Grüner R, Lundervold A, et al., 2006. Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psych, 47(10):1013–1022. https://doi.org/10.1111/j.1469-7610.2006.01639.xCrossRefGoogle Scholar
  54. Rhodes G, Brennan S, Carey S, 1987. Identification and ratings of caricatures: implications for mental representations of faces. Cogn Psychol, 19(4):473–497. https://doi.org/10.1016/0010-0285(87)90016-8CrossRefGoogle Scholar
  55. Schreibmann E, Thorndyke B, Li TF, et al., 2008. Fourdimensional image registration for image-guided radiotherapy. Int J Radiat Oncol Biol Phys, 71(2):578–586. https://doi.org/10.1016/j.ijrobp.2008.01.042CrossRefGoogle Scholar
  56. Shapiro ML, Eichenbaum H, 1999. Hippocampus as a memory map: Synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus, 9(4):365–384. https://doi.org/10.1002/(SICI)1098-1063(1999)9:4<365::AID-HIPO4>3.0.CO;2-TCrossRefGoogle Scholar
  57. Shen DG, Davatzikos C, 2002. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans Med Imag, 21(11):1421–1439. https://doi.org/10.1109/TMI.2002.803111CrossRefGoogle Scholar
  58. Shen DG, Davatzikos C, 2003. Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration. NeuroImage, 18(1):28–41. https://doi.org/10.1006/nimg.2002.1301CrossRefGoogle Scholar
  59. Shen DG, Davatzikos C, 2004. Measuring temporal morphological changes robustly in brain MR images via 4-dimensional template warping. NeuroImage, 21(4):1508–1517. https://doi.org/10.1016/j.neuroimage.2003.12.015CrossRefGoogle Scholar
  60. Shen DG, Sundar H, Xue Z, et al., 2005. Consistent estimation of cardiac motions by 4D image registration. LNCS, 3750: 902–910. https://doi.org/10.1007/11566489_111Google Scholar
  61. Sowell ER, Peterson BS, Kan E, et al., 2007. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebr Cort, 17(7):1550–1560. https://doi.org/10.1093/cercor/bhl066CrossRefGoogle Scholar
  62. Sowell ER, Kan E, Yoshii J, et al., 2008. Thinning of sensorimotor cortices in children with tourette syndrome. Nat Neurosci, 11(6):637–639. https://doi.org/10.1038/nn.2121CrossRefGoogle Scholar
  63. Sporns O, 2011. The human connectome: a complex network. Ann New York Acad Sci, 1224(1):109–125. https://doi.org/10.1111/j.1749-6632.2010.05888.xCrossRefGoogle Scholar
  64. Squire LR, 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev, 99(2):195–231.CrossRefGoogle Scholar
  65. Toga AW, Clark KA, Thompson PM, et al., 2012. Mapping the human connectome. Neurosurgery, 71(1):1–5. https://doi.org/10.1227/NEU.0b013e318258e9ffCrossRefGoogle Scholar
  66. van Essen DC, Smith SM, Barch DM, et al., 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage, 80:62–79. https://doi.org/10.1016/j.neuroimage.2013.05.041CrossRefGoogle Scholar
  67. van Hecke W, Sijbers J, de Backer S, et al., 2009. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods. NeuroImage, 46(3):692–707. https://doi.org/10.1016/j.neuroimage.2009.02.032CrossRefGoogle Scholar
  68. Wen Y, Peterson BS, Xu DR, 2013. A highly accurate, optical flow-based algorithm for nonlinear spatial normalization of diffusion tensor images. Int Joint Conf on Neural Networks, p.1–8. https://doi.org/10.1109/IJCNN.2013.6706989Google Scholar
  69. Xu DR, 1995. A Study of Analogical Generation of Image in Designing, in Computer Science. PhD Thesis, Zhejiang University, Hangzhou, China, p.120 (in Chinese).Google Scholar
  70. Xu DR, 1998. Automated analogical design of newspaper page layout. Chin J Comput, 21(12):1066–1073 (in Chinese). https://doi.org/10.3321/j.issn:0254-4164.1998.12.002Google Scholar
  71. Xu DR, Pan YH, 1995. Generation-oriented analogy reasoning. Sci China, 38(9):150–167Google Scholar
  72. Xu DR, Mori S, Shen DG, et al., 2003. Spatial normalization of diffusion tensor fields. Magn Reson Med, 50(1):175–182. https://doi.org/10.1002/mrm.10489CrossRefGoogle Scholar
  73. Xu DR, Hao XJ, Bansal R, et al., 2008. Seamless warping of diffusion tensor fields. IEEE Trans Med Imag, 27(3):285–299. https://doi.org/10.1109/TMI.2007.901428CrossRefGoogle Scholar
  74. Zhuang JC, Hrabe J, Kangarlu A, et al., 2006. Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffusion gradients. J Magn Reson Imag, 24(5):1188–1193. https://doi.org/10.1002/jmri.20727CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Columbia University & New York State Psychiatric InstituteNew YorkUSA
  2. 2.Shanghai Key Laboratory of Multidimensional Information ProcessingEast China Normal UniversityShanghaiChina

Personalised recommendations