Skip to main content
Log in

TIE algorithm: a layer over clustering-based taxonomy generation for handling evolving data

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Taxonomy is generated to effectively organize and access large volume of data. A taxonomy is a way of representing concepts that exist in data. It needs to continuously evolve to reflect changes in data. Existing automatic taxonomy generation techniques do not handle the evolution of data; therefore, the generated taxonomies do not truly represent the data. The evolution of data can be handled by either regenerating taxonomy from scratch, or allowing taxonomy to incrementally evolve whenever changes occur in the data. The former approach is not economical in terms of time and resources. A taxonomy incremental evolution (TIE) algorithm, as proposed, is a novel attempt to handle the data that evolve in time. It serves as a layer over an existing clustering-based taxonomy generation technique and allows an existing taxonomy to incrementally evolve. The algorithm was evaluated in research articles selected from the computing domain. It was found that the taxonomy using the algorithm that evolved with data needed considerably shorter time, and had better quality per unit time as compared to the taxonomy regenerated from scratch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baeza-Yates R, Ribeiro-Neto B, 2011. Modern Information Retrieval: the Concepts and Technology Behind (2nd Ed.). Pearson Education Limited, New York, USA.

    Google Scholar 

  • Blumberg R, Atre S, 2003. The problem with unstructured data. DM Rev, 13(2):42–46.

    Google Scholar 

  • Camiña SL, 2010. A Comparison of Taxonomy Generation Techniques Using Bibliometric Methods: Applied to Research Strategy Formulation. MS Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.

    Google Scholar 

  • Carmel D, Roitman H, Zwerdling N, 2009. Enhancing cluster labeling using Wikipedia. Proc 32nd Int ACM SIGIR Conf on Research and Development in Information Retrieval, p.139–146. https://doi.org/10.1145/1571941.1571967

    Google Scholar 

  • Cha SH, 2007. Comprehensive survey on distance/similarity measures between probability density functions. Int J Math Models Methods Appl Sci, 1(4):300–307.

    MathSciNet  Google Scholar 

  • Cimiano P, Hotho A, Staab S, 2005. Learning concept hierarchies from text corpora using formal concept analysis. J Artif Intell Res, 24(1):305–339.

    Article  MATH  Google Scholar 

  • Dawelbait G, Mezher T, Woon WL, et al., 2010. Taxonomy based trend discovery of renewable energy technologies in desalination and power generation. Proc Technology Management for Global Economic Growth, p.1–8.

    Google Scholar 

  • Deerwester S, Dumais ST, Furnas GW, et al., 1990. Indexing by latent semantic analysis. J Am Soc Inform Sci Technol, 41(6):391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

    Article  Google Scholar 

  • Dietz EA, Vandic D, Frasincar F, 2012. TaxoLearn: a semantic approach to domain taxonomy learning. Proc IEEE/ WIC/ACM Int Conf on Web Intelligence and Intelligent Agent Technology, p.58–65. https://doi.org/10.1109/WI-IAT.2012.129 Enhanced Taxonomy Generation. USA Patent 20 100 274 733.

    Google Scholar 

  • Fountain T, Lapata M, 2012. Taxonomy induction using hierarchical random graphs. Proc Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, p.466–476.

    Google Scholar 

  • Glover E, Pennock DM, Lawrence S, et al., 2002. Inferring hierarchical descriptions. Proc 11th Int Conf on Information and Knowledge Management, p.507–514. https://doi.org/10.1145/584792.584876

    Google Scholar 

  • Hedden H, 2010. The Accidental Taxonomist. Information Today Inc., Medford, New Jersey, USA, p.18–28.

    Google Scholar 

  • Irfan R, Khan S, 2016. TIE: an algorithm for incrementally evolving taxonomy for text data. Proc 15th IEEE Int Conf on Machine Learning and Applications, p.687–692. https://doi.org/10.1109/ICMLA.2016.0121

    Google Scholar 

  • Jain AK, Murty MN, Flynn PJ, 1999. Data clustering: a review. ACM Comput Surv, 31(3):264–323. https://doi.org/10.1145/331499.331504

    Article  Google Scholar 

  • Kashyap V, Ramakrishnan C, Thomas C, et al., 2005. TaxaMiner: an experimentation framework for automated taxonomy bootstrapping. Int J Web Grid Serv, 1(2): 240–266. https://doi.org/10.1504/IJWGS.2005.008322

    Article  Google Scholar 

  • Koff W, Gustafson P, 2011. Data Revolution. Technical Report, Computer Sciences Corporation Leading Edge Forum.

    Google Scholar 

  • Kumar AA, Chandrasekhar S, 2012. Text data pre-processing and dimensionality reduction techniques for document clustering. Int J Eng Res Technol, 1(5):1–6.

    Google Scholar 

  • Lefever E, 2015. LT3: a multi-modular approach to automatic taxonomy construction. Proc 9th Int Workshop on Semantic Evaluation, p.944–948.

    Chapter  Google Scholar 

  • Li T, Anand SS, 2009. Exploiting domain knowledge by automated taxonomy generation in recommender systems. Proc 10th Int Conf on E-commerce and Web Technologies, p.120–131.

    Chapter  Google Scholar 

  • Manning CD, Raghavan P, Schütze H, 2008. Introduction to Information Retrieval. Cambridge University Press, New York, NY, USA.

    Book  MATH  Google Scholar 

  • Marcacini RM, Rezende SO, 2010. Incremental construction of topic hierarchies using hierarchical term clustering. Proc 22nd Int Conf on Software Engineering and Knowledge Engineering, p.553–558.

    Google Scholar 

  • Medelyan O, Manion S, Broekstra J, et al., 2013. Constructing a focused taxonomy from a document collection. Proc 10th Int Conf on the Semantic Web: Semantics and Big Data, p.367–381. https://doi.org/10.1007/978-3-642-38288-8_25

    Chapter  Google Scholar 

  • Meijer K, Frasincar F, Hogenboom F, 2014. A semantic approach for extracting domain taxonomies from text. Dec Support Syst, 62:78–93. https://doi.org/10.1016/j.dss.2014.03.006

    Article  Google Scholar 

  • Muller A, Dorre J, Gerstl P, et al., 1999. The TaxGen framework: automating the generation of a taxonomy for a large document collection. Proc 32nd Annual Hawaii Int Conf on Systems Sciences, Article 2034.

    Google Scholar 

  • Nadkarni PM, Ohno-Machado L, Chapman WW, 2011. Natural language processing: an introduction. J Am Med Inform Assoc, 18(5):544–551. https://doi.org/10.1136/amiajnl-2011-000464

    Article  Google Scholar 

  • Neshati M, Alijamaat A, Abolhassani H, et al., 2007. Taxonomy learning using compound similarity measure. Proc IEEE/WIC/ACM Int Conf on Web Intelligence, p.487–490. https://doi.org/10.1109/WI.2007.135

    Chapter  Google Scholar 

  • Paukkeri MS, García-Plaza AP, Fresno V, et al., 2012. Learning a taxonomy from a set of text documents. Appl Soft Comput, 12(3):1138–1148. https://doi.org/10.1016/j.asoc.2011.11.009

    Article  Google Scholar 

  • Qi XG, Yin DW, Xue ZZ, et al., 2010. Choosing your own adventure: automatic taxonomy generation to permit many paths. Proc 19th ACM Int Conf on Information and Knowledge Management, p.1853–1856. https://doi.org/10.1145/1871437.1871746

    Google Scholar 

  • Sánchez D, Moreno A, 2004. Automatic generation of taxonomies from the WWW. Proc 5th Int Conf on Practical Aspects of Knowledge Management, p.208–219. https://doi.org/10.1007/978-3-540-30545-3_20

    Chapter  Google Scholar 

  • Sclano F, Velardi P, 2007. TermExtractor: a web application to learn the common terminology of interest groups and research communities. Proc 3rd Int Conf on Interoperability for Enterprise Software and Applications p.85–94.

    Google Scholar 

  • Spangler WS, Kreulen JT, Newswanger JF, 2006. Machines in the conversation: detecting themes and trends in informal communication streams. IBM Syst J, 45(4):785–799. https://doi.org/10.1147/sj.454.0785

    Article  Google Scholar 

  • Steinbach M, Karypis G, Kumar V, 2000. A comparison of document clustering techniques. World Text Mining Conf, p.1–2.

    Google Scholar 

  • Sujatha R, Krishna Rao BR, 2011. Taxonomy construction techniques—issues and challenges. Ind J Comput Sci Eng, 2(5):661–671.

    Google Scholar 

  • Thada V, Jaglan DV, 2013. Comparison of jaccard, dice, cosine similarity coefficient to find best fitness value for Web retrieved documents using genetic algorithm. IntJ Innov Eng Technol, 2(4):202–205.

    Google Scholar 

  • Treeratpituk P, Callan J, 2006. Automatically labeling hierarchical clusters. Proc Int Conf on Digital Government Research, p.167–176. https://doi.org/10.1145/1146598.1146650

    Google Scholar 

  • Turner V, Gantz J, Reinsel D, 2014. The Digital Universe of Opportunities: Rich Data and the Increasing Value of the Internet of Things. IDC White Paper, p.1–5. https://doi.org/10.7790/ajtde.v2n3.47

    Google Scholar 

  • Velardi P, Faralli S, Navigli R, 2013. OntoLearn reloaded: a graph-based algorithm for taxonomy induction. Comput Ling, 39(3):665–707. https://doi.org/10.1162/COLI_a_00146

    Article  Google Scholar 

  • Weng SS, Liu CK, 2004. Using text classification and multiple concepts to answer e-mails. Expert Syst Appl, 26(4): 529–543. https://doi.org/10.1016/j.eswa.2003.10.011

    Article  Google Scholar 

  • Yang HC, Lee CH, Hsiao HW, 2015. Incorporating selforganizing map with text mining techniques for text hierarchy generation. Appl Soft Comput, 34:251–259. https://doi.org/10.1016/j.asoc.2015.05.005

    Article  Google Scholar 

  • Yao JJ, Cui B, Cong G, et al., 2012. Evolutionary taxonomy construction from dynamic tag space. World Wide Web, 15(5-6):581–602. https://doi.org/10.1007/s11280-011-0150-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Irfan.

Additional information

A preliminary version was presented at the 15th IEEE International Conference on Machine Learning and Applications, Anaheim, CA, USA, December 18–20, 2016

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, R., Khan, S., Rajpoot, K. et al. TIE algorithm: a layer over clustering-based taxonomy generation for handling evolving data. Frontiers Inf Technol Electronic Eng 19, 763–782 (2018). https://doi.org/10.1631/FITEE.1700517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700517

Key words

CLC number

Navigation