Advertisement

Hybrid-augmented intelligence: collaboration and cognition

  • Nan-ning Zheng
  • Zi-yi Liu
  • Peng-ju Ren
  • Yong-qiang Ma
  • Shi-tao Chen
  • Si-yu Yu
  • Jian-ru Xue
  • Ba-dong Chen
  • Fei-yue Wang
Review

Abstract

The long-term goal of artificial intelligence (AI) is to make machines learn and think like human beings. Due to the high levels of uncertainty and vulnerability in human life and the open-ended nature of problems that humans are facing, no matter how intelligent machines are, they are unable to completely replace humans. Therefore, it is necessary to introduce human cognitive capabilities or human-like cognitive models into AI systems to develop a new form of AI, that is, hybrid-augmented intelligence. This form of AI or machine intelligence is a feasible and important developing model. Hybrid-augmented intelligence can be divided into two basic models: one is human-in-the-loop augmented intelligence with human-computer collaboration, and the other is cognitive computing based augmented intelligence, in which a cognitive model is embedded in the machine learning system. This survey describes a basic framework for human-computer collaborative hybrid-augmented intelligence, and the basic elements of hybrid-augmented intelligence based on cognitive computing. These elements include intuitive reasoning, causal models, evolution of memory and knowledge, especially the role and basic principles of intuitive reasoning for complex problem solving, and the cognitive learning framework for visual scene understanding based on memory and reasoning. Several typical applications of hybrid-augmented intelligence in related fields are given.

Keywords

Human-machine collaboration Hybrid-augmented intelligence Cognitive computing Intuitive reasoning Causal model Cognitive mapping Visual scene understanding Self-driving cars 

CLC number

TP18 

Notes

Acknowledgements

We are grateful to the reviewers for their valuable comments which helped us improve the manuscript.

References

  1. Ando, R.K., 2007. Biocreative II gene mention tagging system at IBM Watson. Proc. 2nd BioCreative Challenge Evaluation Workshop, p.101–103.Google Scholar
  2. Ando, R.K., Dredze, M., Zhang, T., 2005. Trec 2005 genomics track experiments at IBM Watson. 14th Text REtrieval Conf., p.1–10.Google Scholar
  3. Atif, Y., Mathew, S.S., 2015. Building a smart campus to support ubiquitous learning. J. Amb. Intell. Human. Comput., 6(2):1–16. http://dx.doi.org/10.1007/s12652-014-0226-yGoogle Scholar
  4. Ball, M.O., Chen, C.Y., Hoffman, R., et al., 2001. Collaborative decision making in air traffic management: current and future research directions. In: Bianco, L., Dell’Olmo, P., Odoni, A.R. (Eds.), New Concepts and Methods in Air Traffic Management. Springer Berlin Heidelberg, Berlin, Germany, p.17–30. http://dx.doi.org/10.1007/978-3-662-04632-6CrossRefGoogle Scholar
  5. Barnes, M.J., Chen, J.Y.C., Jentsch, F., et al., 2013. An overview of humans and autonomy for military environments: safety, types of autonomy, agents, and user interfaces. Proc. 10th Int. Conf. on Engineering Psychology and Cognitive Ergonomics: Applications and Services, p.243–252. https://dx.doi.org/10.1007/978-3-642-39354-9_27CrossRefGoogle Scholar
  6. Boman, I.L., Bartfai, A., 2015. The first step in using a robot in brain injury rehabilitation: patients’ and health-care professionals’ perspective. Disab. Rehab. Assist. Technol., 10(5):365–370. http://dx.doi.org/10.3109/17483107.2014.913712Google Scholar
  7. Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Patt. Recogn., 30(7):1145–1159. http://dx.doi.org/10.1016/S0031-3203(96)00142-2Google Scholar
  8. Browne, C.B., Powley, E., Whitehouse, D., et al., 2012. A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1–43. http://dx.doi.org/10.1109/TCIAIG.2012.2186810Google Scholar
  9. Campbell, M., Hoane, A.J., Hsu, F.H., 2002. Deep Blue. Artif. Intell., 134(1-2):57–83. http://dx.doi.org/10.1016/S0004-3702(01)00129-1MATHGoogle Scholar
  10. Chen, D., Yuan, Z., Hua, G., et al., 2016. Multi-timescale collaborative tracking. IEEE Trans. Patt. Anal. Mach. Intell., 39(1):141–155. http://dx.doi.org/10.1109/TPAMI.2016.2539956Google Scholar
  11. Chen, Y., Argentinis, J.D.E., Weber, G., 2016. IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Therap., 38(4):688–701. http://dx.doi.org/10.1016/j.clinthera.2015.12.001Google Scholar
  12. Cimbala, S.J., 2012. Artificial Intelligence and National Security. Lexington Books, Lanham, USA.Google Scholar
  13. Denton, E.L., Chintala, S., Fergus, R., et al., 2015. Deep generative image models using a Laplacian pyramid of adversarial networks. Proc. 28th Int. Conf. on Neural Information Processing Systems, p.1486–1494.Google Scholar
  14. de Rocquigny, E., Nicolas, D., Stefano, T., 2008. Uncertainty in Industrial Practice: a Guide to Quantitative Uncertainty Management. John Wiley & Sons, Hoboken, USA.CrossRefMATHGoogle Scholar
  15. Dias, M.G., Harris, P., 1988. The effect of make-believe play on deductive reasoning. Br. J. Devel. Psychol., 6(3):207–221. http://dx.doi.org/10.1111/j.2044-835X.1988.tb01095.xGoogle Scholar
  16. Dounias, G., 2003. Hybrid computational intelligence in medicine. Proc. Workshop on Intelligent and Adaptive Systems in Medicine.Google Scholar
  17. Eakin, H., Luers, A.L., 2006. Assessing the vulnerability of social-environmental systems. Ann. Rev. Environ. Resourc., 31:1–477. http://dx.doi.org/10.1146/annurev.energy.30.050504.144352Google Scholar
  18. Ferreira, F.J., Crispim, V.R., Silva, A.X., 2010. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques. Appl. Rad. Isot., 68(6):1012–1017. http://dx.doi.org/10.1016/j.apradiso.2010.01.019Google Scholar
  19. Fire, A., Zhu, S.C., 2016. Learning perceptual causality from video. ACM Trans. Intell. Syst. Technol., 7(2):1–22. http://dx.doi.org/10.1145/2809782Google Scholar
  20. Fischbein, H., 2002. Intuition in Science and Mathematics: an Educational Approach. Springer Science & Business Media, Berlin, Germany.Google Scholar
  21. Fjellheim, R., Bratvold, R.R., Herbert, M.C., 2008. CODIO -collaborative decisionmaking in integrated operations. Intelligent Energy Conf. and Exhibition, p.1–7. http://dx.doi.org/10.2118/111876-MSGoogle Scholar
  22. Fogel, D.B., 1995. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Wiley-IEEE Press.Google Scholar
  23. Freyd, J.J., 1983. Representing the dynamics of a static form. Memory Cogn., 11(4):342–346. http://dx.doi.org/10.3758/BF03202447Google Scholar
  24. Funahashi, K.I., Nakamura, Y., 1993. Approximation of dynamic systems by continuous-time recurrent neural networks. Neur. Netw., 6(6):801–806. http://dx.doi.org/10.1016/S0893-6080(05)80125-XGoogle Scholar
  25. Gil, Y., Greaves, M., Hendler, J., et al., 2014. Amplify scientific discovery with artificial intelligence. Science, 346(6206):171–172. http://dx.doi.org/10.1126/science.1259439Google Scholar
  26. Gilbert, G.R., Beebe, M.K., 2010. United States Department of Defense Research in Robotic Unmanned Systems for Combat Casualty Care. Report No. RTO-MP-HFM-182, Fort Detrick, Frederick, USA.Google Scholar
  27. Goodfellow, I.J., Shlens, J., Szegedy, C., 2014a. Explaining and harnessing adversarial examples. ePrint Archive, arXiv:1412.6572.Google Scholar
  28. Goodfellow, I.J., Pougetabadie, J., Mirza, M., et al., 2014b. Generative adversarial nets. Advances in Neural Information Processing Systems, p.2672–2680.Google Scholar
  29. Graves, A., Mohamed, A.R., Hinton, G., 2013. Speech recognition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645–6649. http://dx.doi.org/10.1109/ICASSP.2013.6638947Google Scholar
  30. Graves, A., Wayne, G., Danihelka, I., 2014. Neural turing machines. ePrint Archive, arXiv:1410.5401.Google Scholar
  31. Graves, A., Wayne, G., Reynolds, M., et al., 2016. Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471–476. http://dx.doi.org/10.1038/nature20101Google Scholar
  32. Griffiths, T.L., Chater, N., Kemp, C., et al., 2010. Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn. Sci., 14(8):357–364. http://dx.doi.org/10.1016/j.tics.2010.05.004Google Scholar
  33. Guilford, J.P., 1967. The Nature of Human Intelligence. McGraw-Hill, New York, USA.Google Scholar
  34. Hagan, M.T., Demuth, H.B., Beale, M.H., et al., 2002. Neural Network Design. PWS Publishing Co., Boston, USA.Google Scholar
  35. Hilovska, K., Koncz, P., 2012. Application of artificial intelligence and data mining techniques to financial markets. ACTA VSFS, 6:62–76.Google Scholar
  36. Hiskens, I.A., Davy, R.J., 2001. Exploring the power flow solution space boundary. IEEE Trans. Power Syst., 16(3):389–395. http://dx.doi.org/10.1109/59.932273Google Scholar
  37. Hoffman, R., 1998. Integer Programming Models for Ground-Holding in Air Traffic Flow Management. PhD Thesis, University of Maryland, College Park, USA.Google Scholar
  38. Holland, J.H., 1992. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press.Google Scholar
  39. Honey, C.J., Thivierge, J.P., Sporns, O., 2010. Can structure predict function in the human brain? NeuroImage, 52(3):766–776. http://dx.doi.org/10.1016/j.neuroimage.2010.01.071Google Scholar
  40. Hu, P., Zhou, S., Ding, W.Z., et al., 2010. The comprehensive measurement model of the member importance in social networks. Int. Conf. on Management and Service Science, p.1–4. http://dx.doi.org/10.1109/ICMSS.2010.5577405Google Scholar
  41. Hu, P., Wen, C.L., Pan, D., 2013. The mutual relationship among external network, internal resource, and competitiveness of enterprises. Sci. Res. Manag., V(4):90–98 (in Chinese).Google Scholar
  42. Hughes, D., Camp, C., O’Hara, J., et al., 2016. Health resource use following robot-assisted surgery versus open and conventional laparoscopic techniques in oncology: analysis of English secondary care data for radical prostatectomy and partial nephrectomy. BJU Int., 117(6):940–947.Google Scholar
  43. Im, D.Y., Ryoo, Y.J., Kim, D.Y., et al., 2009. Unmanned driving of intelligent robotic vehicle. ISIS Proc. 10th Symp. on Advanced Intelligent Systems, p.213–216.Google Scholar
  44. Ioffe, A.D., 1979. Necessary and sufficient conditions for a local minimum. 3: second order conditions and augmented duality. SIAM J. Contr. Opt., 17(2):266–288. http://dx.doi.org/10.1137/0317021MATHGoogle Scholar
  45. Janis, I.L., Mann, L., 1977. Decision Making: a Psychological Analysis of Conflict, Choice, and Commitment. Free Press, New York, USA.Google Scholar
  46. Jennings, N.R., 2000. On agent-based software engineering artificial intelligence. Artif. Intell., 117(2):277–296.MATHGoogle Scholar
  47. Johnson, M., Bradshaw, J.M., Feltovich, P.J., et al., 2014. Coactive design: designing support for interdependence in joint activity. Electr. Eng. Math. Comput. Sci., 3(1):43–49. http://dx.doi.org/10.5898/JHRI.3.1Google Scholar
  48. Johnson Johnson, S., Slaughter, V., Carey, S., 1998. Whose gaze will infants follow? The elicitation of gaze-following in 12-month-olds. Devel. Sci., 1(2):233–238. http://dx.doi.org/10.1111/1467-7687.00036Google Scholar
  49. Jordan, M.I., 2016. On computational thinking, inferential thinking and data science. Proc. 28th ACM Symp. on Parallelism in Algorithms and Architectures, p.47. http://dx.doi.org/10.1145/2935764.2935826Google Scholar
  50. Kourtzi, Z., Kanwisher, N., 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci., 12(1):48–55. http://dx.doi.org/10.1162/08989290051137594Google Scholar
  51. Lake, B.M., Salakhutdinov, R., Tenenbaum, J.B., 2015. Human-level concept learning through probabilistic program induction. Science, 350(6266):1332–1338. http://dx.doi.org/10.1126/science.aab3050MathSciNetMATHGoogle Scholar
  52. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., et al., 2016. Building machines that learn and think like people. Behav. Brain Sci., 22:1–101.Google Scholar
  53. Ledford, H., 2015. How to solve the world’s biggest problems. Nature, 525:308–311. http://dx.doi.org/10.1038/525308aGoogle Scholar
  54. Lewis, D.D., 1998. Naive (Bayes) at forty: the independence assumption in information retrieval. European Conf. on Machine Learning, p.4–15. http://dx.doi.org/10.1007/BFb0026666Google Scholar
  55. Lillicrap, T.P., Hunt, J.J., Pritzel, A., et al., 2016. Continuous control with deep reinforcement learning. ePrint Archive, arXiv:1509.02971.Google Scholar
  56. Lippmann, R.P., 1987. An introduction to computing with neural nets. IEEE ASSP Mag., 4(2):4–22. http://dx.doi.org/10.1109/MASSP.1987.1165576Google Scholar
  57. Liyanage, J.P., 2012. Hybrid Intelligence Through Business Socialization and Networking: Managing Complexities in the Digital Era. IGI Global, Hershey, USA.CrossRefGoogle Scholar
  58. Marchiori, D., Warglien, M., 2008. Predicting human interactive learning by regret-driven neural networks. Science, 319(5866):1111–1113. http://dx.doi.org/10.1126/science.1151185Google Scholar
  59. Marr, D., 1977. Artificial intelligence—a personal view. Artif. Intell., 9(1):37–48. http://dx.doi.org/10.1016/0004-3702(77)90013-3Google Scholar
  60. Martin, J., 2007. The Meaning of the 21st Century: a Vital Blueprint for Ensuring Our Future. Random House.Google Scholar
  61. McCarthy, J., Hayes, P.J., 1987. Some Philosophical Problems from the Standpoint of Artificial Intelligence. Morgan Kaufmann Publishers Inc., Burlington, USA.MATHGoogle Scholar
  62. Michalski, R.S., Carbonell, J.G., Mitchell, T.M., 1984. Machine Learning: an Artificial Intelligence Approach. Springer Science & Business Media, Berlin, Germany.MATHGoogle Scholar
  63. Mikolov, T., Karafiát, M., Burget, L., et al., 2010. Recurrent neural network based language model. Conf. of the Int. Speech Communication Association, p.1045–1048.Google Scholar
  64. Minsky, M., 1961. Steps toward artificial intelligence. Proc. IRE, 49(1):8–30. http://dx.doi.org/10.1109/JRPROC.1961.287775MathSciNetGoogle Scholar
  65. Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. ePrint Archive, arXiv:1411.1784.Google Scholar
  66. Mizumoto, M., 1982. Comparison of fuzzy reasoning methods. Fuzzy Sets Syst., 8(3):253–283. http://dx.doi.org/10.1016/S0165-0114(82)80004-3MathSciNetMATHGoogle Scholar
  67. Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2013. Playing Atari with deep reinforcement learning. ePrint Archive, arXiv:1312.5602.Google Scholar
  68. Mnih, V., Kavukcuoglu, K., Silver, D., et al., 2015. Humanlevel control through deep reinforcement learning. Nature, 518(7540):529–533. http://dx.doi.org/10.1038/nature14236Google Scholar
  69. Moran, J., Desimone, R., 1985. Selective Attention Gates Visual Processing in the Extrastriate Cortex. MIT Press, Cambridge, USA.Google Scholar
  70. Muir, B.M., 1994. Trust in automation: part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11):1905–1922. http://dx.doi.org/10.1080/00140139408964957Google Scholar
  71. Nash, J.F., 1950. Equilibrium points in n-person games. PNAS, 36(1):48–49. http://dx.doi.org/10.1073/pnas.36.1.48MathSciNetMATHGoogle Scholar
  72. Navigli, R., Ponzetto, S.P., 2012. Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell., 193(6):217–250. http://dx.doi.org/10.1016/j.artint.2012.07.001MathSciNetMATHGoogle Scholar
  73. Newell, A., Simon, H.A., 1972. Human Problem Solving. Prentice-Hall, Englewood Cliffs, USA.Google Scholar
  74. Nilsson, N.J., 1965. Learning Machines: Foundations of Trainable Pattern-Classifying Systems. McGraw-Hill, New York, USA.MATHGoogle Scholar
  75. Nissen, M.J., Bullemer, P., 1987. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol., 19(1):1–32. http://dx.doi.org/10.1016/0010-0285(87)90002-8Google Scholar
  76. Noh, H., Hong, S., Han, B., 2015. Learning deconvolution network for semantic segmentation. IEEE Int. Conf. on Computer Vision, p.1520–1528.Google Scholar
  77. Norman, K.A., O’Reilly, R.C., 2003. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev., 110(4):611–646. http://dx.doi.org/10.1037/0033-295X.110.4.611Google Scholar
  78. Ogura, T., Yamada, J., Yamada, S.I., et al., 1989. A 20 kbit associative memory lSI for artificial intelligence machines. IEEE J. Sol.-State Circ., 24(4):1014–1020. http://dx.doi.org/10.1109/4.34086Google Scholar
  79. O’Keefe, J., Nadel, L., 1978. The Hippocampus as a Cognitive Map. Clarendon Press, Oxford.Google Scholar
  80. O’Leary, D.E., 2013. Artificial intelligence and big data. IEEE Intell. Syst., 28(2):96–99. http://dx.doi.org/10.1109/MIS.2013.39Google Scholar
  81. Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413. http://dx.doi.org/10.1016/J.ENG.2016.04.018Google Scholar
  82. Park, C.C., Kim, G., 2015. Expressing an image stream with a sequence of natural sentences. Advances in Neural Information Processing Systems, p.73–81.Google Scholar
  83. Poole, D., Mackworth, A., Goebel, R., 1997. Computational Intelligence: a Logical Approach. Oxford University Press, Oxford, UK.MATHGoogle Scholar
  84. Premack, D., Premack, A.J., 1997. Infants attribute value to the goal-directed actions of self-propelled objects. J. Cogn. Neurosci., 9(6):848–856. http://dx.doi.org/10.1162/jocn.1997.9.6.848Google Scholar
  85. Pylyshyn, Z.W., 1984. Computation and Cognition: Toward a Foundation for Cognitive Science. The MIT Press, Cambridge, Massachusetts, USA.Google Scholar
  86. Rachlin, H., 2012. Making IBM’s computer, Watson, human. Behav. Anal., 35(1):1–16.Google Scholar
  87. Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. ePrint Archive, arXiv:1511.06434.Google Scholar
  88. Rashevsky, N., 1964. Man-machine interaction in automobile driving. Prog. Biocybern., 42:188–200.Google Scholar
  89. Rasmussen, C.E., 2000. The infinite Gaussian mixture model. Advances in Neural Information Processing Systems, p.554–560.Google Scholar
  90. Rehder, B., Hastie, R., 2001. Causal knowledge and categories: the effects of causal beliefs on categorization, induction, and similarity. J. Exp. Psychol., 130(3):323–360. http://dx.doi.org/10.1037/0096-3445.130.3.323Google Scholar
  91. Russell, S.J., Norvig, P., 1995. Artificial Intelligence: a Modern Approach. Prentice Hall, Englewood Cliffs, USA.MATHGoogle Scholar
  92. Salimans, T., Goodfellow, I., Zaremba, W., et al., 2016. Improved techniques for training gans. Advances in Neural Information Processing Systems, p.2226–2234.Google Scholar
  93. Salvi, C., Bricolo, E., Kounios, J., et al., 2016. Insight solutions are correct more often than analytic solutions. Think. Reason., 22(4):443–460. http://dx.doi.org/10.1080/13546783.2016.1141798Google Scholar
  94. Samuel, A.L., 1988. Some studies in machine learning using the game of checkers. IBM J. Res. Dev., 44(1-2):206–226. http://dx.doi.org/10.1147/rd.441.0206Google Scholar
  95. Saripalli, S., Montgomery, J.F., Sukhatme, G., 2003. Visually guided landing of an unmanned aerial vehicle. IEEE Trans. Robot. Autom., 19(3):371–380. http://dx.doi.org/10.1109/TRA.2003.810239Google Scholar
  96. Saxe, R., Carey, S., 2006. The perception of causality in infancy. ACTA Psychol., 123(1-2):144–165. http://dx.doi.org/10.1016/j.actpsy.2006.05.005Google Scholar
  97. Schlottmann, A., Ray, E.D., Mitchell, A., et al., 2006. Perceived physical and social causality in animated motions: spontaneous reports and ratings. ACTA Psychol., 123(1-2):112–143. http://dx.doi.org/10.1016/j.actpsy.2006.05.006Google Scholar
  98. Schwartz, T., Zinnikus, I., Krieger, H.U., et al., 2016. Hybrid teams: flexible collaboration between humans, robots and virtual agents. German Conf. on Multiagent System Technologies, p.131–146.CrossRefGoogle Scholar
  99. Selfridge, O.G., 1988. Pandemonium: a paradigm for learning. National Physical Laboratory Conf., p.511–531.Google Scholar
  100. Shader, R.I., 2016. Some reflections on IBM Watson and on women’s health. Clin. Therap., 38(1):1–2. http://dx.doi.org/10.1016/j.clinthera.2015.12.008Google Scholar
  101. Sharp, C.S., Shakernia, O., Sastry, S.S., 2001. A vision system for landing an unmanned aerial vehicle. IEEE Int. Conf. on Robotics & Automation, p.1720–1727. http://dx.doi.org/10.1109/ROBOT.2001.932859Google Scholar
  102. Shrivastava, P., 1995. Ecocentric management for a risk society. Acad. Manag. Rev., 20(1):118–137. http://dx.doi.org/10.5465/AMR.1995.9503271996MathSciNetGoogle Scholar
  103. Shuaibu, B.M., Norwawi, N.M., Selamat, M.H., et al., 2015. Systematic review of Web application security development model. Artif. Intell. Rev., 43(2):259–276. http://dx.doi.org/10.1007/s10462-012-9375-6Google Scholar
  104. Silver, D., Huang, A., Maddison, C.J., et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489. http://dx.doi.org/10.1038/nature16961Google Scholar
  105. Simon, H.A., 1969. The Sciences of the Artificial. MIT Press, Cambridge, USA.Google Scholar
  106. Son, D., Lee, J., Qiao, S., et al., 2014. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol., 9(5):397–404. http://dx.doi.org/10.1038/nnano.2014.38Google Scholar
  107. Sternberg, R.J., 1984. Beyond IQ: a triarchic theory of human intelligence. Br. J. Educat. Stud., 7(2):269–287.Google Scholar
  108. Sternberg, R.J., Davidson, J.E., 1983. Insight in the gifted. Educat. Psychol., 18(1):51–57. http://dx.doi.org/10.1080/00461528309529261Google Scholar
  109. Stone, P., Brooks, R., Brynjolfsson, E., et al., 2016. Artificial Intelligence and Life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel, Stanford University, Stanford, USA.Google Scholar
  110. Sun, Y., Wang, X.G., Tang, X.O., 2014. Deep learning face representation from predicting 10,000 classes. IEEE Conf. on Computer Vision and Pattern Recognition, p.1891–1898. http://dx.doi.org/10.1109/CVPR.2014.244Google Scholar
  111. Szegedy, C., Zaremba, W., Sutskever, I., et al., 2013. Intriguing properties of neural networks. ePrint Archive, arXiv:1312.6199.Google Scholar
  112. Szolovits, P., Patil, R.S., Schwartz, W.B., 1988. Artificial intelligence in medical diagnosis. Ann. Int. Med., 108(1):80–87. http://dx.doi.org/10.1059/0003-4819-108-1-80Google Scholar
  113. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., et al., 2011. How to grow a mind: statistics, structure, and abstraction. Science, 331(6022):1279–1285. http://dx.doi.org/10.1126/science.1192788MathSciNetMATHGoogle Scholar
  114. Thielscher, M., 1997. Ramification and causality. Artif. Intell., 89(1-2):317–364. http://dx.doi.org/10.1016/S0004-3702(96)00033-1MathSciNetMATHGoogle Scholar
  115. Thielscher, M., 2001. The qualification problem: a solution to the problem of anomalous models. Artif. Intell., 131(1-2):1–37. http://dx.doi.org/10.1016/S0004-3702(01)00131-XMathSciNetMATHGoogle Scholar
  116. Thrun, S., Burgard, W., Fox, D., 1998. A probabilistic approach to concurrent mapping and localization for mobile robots. Mach. Learn., 5(3):253–271. http://dx.doi.org/10.1023/A:1008806205438MATHGoogle Scholar
  117. Tolman, E.C., 1948. Cognitive maps in rats and men. Psychol. Rev., 55(4):189–208. http://dx.doi.org/10.1037/h0061626Google Scholar
  118. Tremoulet, P.D., Feldman, J., 2000. Perception of animacy from the motion of a single object. Perception, 29(8):943–951. http://dx.doi.org/10.1068/p3101Google Scholar
  119. Tversky, A., Kahneman, D., 1983. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev., 90(4):293–315. http://dx.doi.org/10.1037/0033-295X.90.4.293Google Scholar
  120. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K., 2016. Pixel recurrent neural networks. ePrint Archive, arXiv:1601.06759.Google Scholar
  121. Varaiya, P., 1993. Smart car on smart roads: problems of control. IEEE Trans. Autom. Contr., 38(2):195–207. http://dx.doi.org/10.1109/9.250509MathSciNetGoogle Scholar
  122. Waldrop, M.M., 2015. Autonomous vehicles: no drivers required. Nature, 518(7537):20–23. http://dx.doi.org/10.1038/518020aGoogle Scholar
  123. Walters, M.L., Koay, K.L., Syrdal, D.S., et al., 2013. Companion robots for elderly people: using theatre to investigate potential users’ views. IEEE Ro-Man, p.691–696. http://dx.doi.org/10.1109/ROMAN.2013.6628393Google Scholar
  124. Wang, F.Y., 2004. Artificial societies, computational experiments, and parallel systems: a discussion on computational theory of complex social-economic systems. Compl. Syst. Compl. Sci., 1(4):25–35.Google Scholar
  125. Wang, F.Y., Wang, X., Li, L.X., et al., 2016. Steps toward parallel intelligence. IEEE/CAA J. Autom. Sin., 3(4):345–348. http://dx.doi.org/10.1109/JAS.2016.7510067MathSciNetGoogle Scholar
  126. Wang, J.J., Ma, Y.Q., Chen, S.T., et al., 2017. Fragmentation knowledge processing and networked artificial. Seieat. Sin. Inform., 47(1):1–22.Google Scholar
  127. Wang, L.M., Xiong, Y.J., Wang, Z., et al., 2016. Temporal segment networks: towards good practices for deep action recognition. LNCS, 9912:20–36. http://dx.doi.org/10.1007/978-3-319-46484-8_2Google Scholar
  128. Wei, P., Zheng, N.N., Zhao, Y.B., et al., 2013. Concurrent action detection with structural prediction. IEEE Int. Conf. on Computer Vision, p.3136–3143. http://dx.doi.org/10.1109/ICCV.2013.389Google Scholar
  129. Wei, P., Zhao, Y., Zheng, N., et al., 2016. Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization. IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TPAMI.2016.2574712Google Scholar
  130. Williams, R.J., Zipser, D., 1989. A learning algorithm for continually running fully recurrent neural networks. Neur. Comput., 1(2):270–280. http://dx.doi.org/10.1162/neco.1989.1.2.270Google Scholar
  131. Williams, W.M., Sternberg, R.J., 1988. Group intelligence: why some groups are better than others. Intelligence, 12(4):351–377. http://dx.doi.org/10.1016/0160-2896(88)90002-5Google Scholar
  132. Xiao, C.Y., Dymetman, M., Gardent, C., 2016. Sequencebased structured prediction for semantic parsing. Meeting of the Association for Computational Linguistics, p.1341–1350.Google Scholar
  133. Yau, S.S., Gupta, S.K.S., Karim, F., et al., 2003. Smart classroom: enhancing collaborative learning using pervasive computing technology. ASEE Annual Conf. and Exposition, p.13633–13642.Google Scholar
  134. Yegnanarayana, B., 1994. Artificial neural networks for pattern recognition. Sadhana, 19(2):189–238. http://dx.doi.org/10.1007/BF02811896MathSciNetGoogle Scholar
  135. Youseff, L., Butrico, M., da Silva, D., 2008. Toward a unified ontology of cloud computing. Grid Computing Environments Workshop, p.1–10. http://dx.doi.org/10.1109/GCE.2008.4738443Google Scholar
  136. Zadeh, L.A., 1996. Fuzzy logic and approximate reasoning. In: Advances in Fuzzy Systems -Applications and Theory: Volume 6. Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems. World Scientific Publishing, Singapore, p.238–259. http://dx.doi.org/10.1142/9789814261302_0016CrossRefGoogle Scholar
  137. Zhao, Y.Y., Qin, B., Liu, T., 2010. Sentiment analysis. J. Softw., 21(8):1834–1848.Google Scholar
  138. Zheng, N.N., Tang, S.M., Cheng, H., et al., 2004. Toward intelligent driver-assistance and safety warning systems. IEEE Intell. Syst., 19(2):8–11. http://dx.doi.org/10.1109/MIS.2004.1274904Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Nan-ning Zheng
    • 1
    • 2
  • Zi-yi Liu
    • 1
    • 2
  • Peng-ju Ren
    • 1
    • 2
  • Yong-qiang Ma
    • 1
    • 2
  • Shi-tao Chen
    • 1
    • 2
  • Si-yu Yu
    • 1
    • 2
  • Jian-ru Xue
    • 1
    • 2
  • Ba-dong Chen
    • 1
    • 2
  • Fei-yue Wang
    • 3
  1. 1.Institute of Artificial Intelligence and RoboticsXi’an Jiaotong UniversityXi’anChina
  2. 2.National Engineering Laboratory of Visual Information Processing ApplicationsXi’an Jiaotong UniversityXi’anChina
  3. 3.State Key Laboratory of Management and Control for Complex Systems, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations