Skip to main content

Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary

Abstract

Considerable progress has been made recently in the development of techniques to determine exactly two-point resistances in networks of various topologies. In particular, a general resistance formula of a non-regular m×n resistor network with an arbitrary boundary is determined by the recursion-transform (RT) method. However, research on the complex impedance network is more difficult than that on the resistor network, and it is a problem worthy of study since the equivalent impedance has many different properties from equivalent resistance. In this study, the equivalent impedance of a non-regular m×n RLC network with an arbitrary boundary is studied based on the resistance formula, and the oscillation characteristics and resonance properties of the equivalent impedance are discovered. In the RLC network, it is found that our formula leads to the occurrence of resonances at the boundary condition holding a series of specific values with an external alternating current source. This curious result suggests the possibility of practical applications of our formula to resonant circuits.

This is a preview of subscription content, access via your institution.

References

  1. Asad, J.H., 2013a. Exact evaluation of the resistance in an infinite face-centered cubic network. J. Stat. Phys., 150(6):1177–1182. https://doi.org/10.1007/s10955-013-0716-x

    MathSciNet  Article  Google Scholar 

  2. Asad, J.H., 2013b. Infinite simple 3D cubic network of identical capacitors. Mod. Phys. Lett. B, 27(15):1350112. https://doi.org/10.1142/S0217984913501121

    Article  Google Scholar 

  3. Asad, J.H., Diab, A.A., Hijjawi, R.S., et al., 2013. Infinite face-centered-cubic network of identical resistors: application to lattice Green’s function. Eur. Phys. J. Plus, 128:2. https://doi.org/10.1140/epjp/i2013-13002-8

    Article  Google Scholar 

  4. Bao, A., Tao, H.S., Liu, H.D., et al., 2014. Quantum magnetic phase transition in square-octagon lattice. Sci. Rep., 4:6918. https://doi.org/10.1038/srep06918

    Article  Google Scholar 

  5. Baule, A., Mari, R., Bo, L., et al., 2013. Mean-field theory of random close packings of axisymmetric particles. Nat. Commun., 4:2194. https://doi.org/10.1038/ncomms3194

    Article  Google Scholar 

  6. Bianco, B., Giordano, S., 2003. Electrical characterization of linear and non-linear random networks and mixtures. Int. J. Circ. Theory Appl., 31(2):199–218. https://doi.org/10.1002/cta.217

    Article  Google Scholar 

  7. Chair, N., 2012. Exact two-point resistance, and the simple random walk on the complete graph minus N edges. Ann. Phys., 327(12):3116–3129. https://doi.org/10.1016/j.aop.2012.09.002

    MathSciNet  Article  Google Scholar 

  8. Chair, N., 2014a. The effective resistance of the N-cycle graph with four nearest neighbors. J. Stat. Phys., 154(4):1177–1190. https://doi.org/10.1007/s10955-014-0916-z

    MathSciNet  Article  Google Scholar 

  9. Chair, N., 2014b. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, twodimensional resistor network, and number theory. Ann. Phys., 341:56–76. https://doi.org/10.1016/j.aop.2013.11.012

    MathSciNet  Article  Google Scholar 

  10. Chamberlin, R.V., 2000. Mean-field cluster model for the critical behaviour of ferromagnets. Nature, 408:337–339. https://doi.org/10.1038/35042534

    Article  Google Scholar 

  11. Chitra, R., Kotliar, G., 2000. Dynamical mean-field theory and electronic structure calculations. Phys. Rev. B, 62:12715. https://doi.org/10.1103/PhysRevB.62.12715

    Article  Google Scholar 

  12. Cserti, J., 2000. Application of the lattice Green’s function for calculating the resistance of an infinite network of resistors. Am. J. Phys., 68(10):896–906. https://doi.org/10.1119/1.1285881

    Article  Google Scholar 

  13. Essam, J.W., Tan, Z.Z., Wu, F.Y., 2014. Resistance between two nodes in general position on an m×n fan network. Phys. Rev. E, 90(3):032130. https://doi.org/10.1103/PhysRevE.90.032130

    Article  Google Scholar 

  14. Essam, J.W., Izmailyan, N.S., Kenna, R., et al., 2015. Comparison of methods to determine point-to-point resistance in nearly rectangular networks with application to a ‘hammock’ network. R. Soc. Open Sci., 2:140420. https://doi.org/10.1098/rsos.140420

    MathSciNet  Article  Google Scholar 

  15. Gabelli, J., Fève, G., Berroir, J.M., et al., 2006. Violation of Kirchhoff’s laws for a coherent RC circuit. Science, 313(5786):499–502. https://doi.org/10.1126/science.1126940

    Article  Google Scholar 

  16. Georges, A., Kotliar, G., Krauth, W., et al., 1996. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68(1):13–125. https://doi.org/10.1103/RevModPhys.68.13

    MathSciNet  Article  Google Scholar 

  17. Giordano, S., 2005. Disordered lattice networks: general theory and simulations. Int. J. Circ. Theory Appl., 33(6):519–540. https://doi.org/10.1002/cta.335

    Article  Google Scholar 

  18. Haule, K., 2007. Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys. Rev. B, 75(15):155113. https://doi.org/10.1103/PhysRevB.75.155113

    Article  Google Scholar 

  19. Izmailian, N.S., Huang, M.C., 2010. Asymptotic expansion for the resistance between two maximum separated nodes on an M by N resistor network. Phys. Rev. E, 82(1):011125. https://doi.org/10.1103/PhysRevE.82.011125

    Article  Google Scholar 

  20. Izmailian, N.S., Kenna, R., 2014. A generalised formulation of the Laplacian approach to resistor networks. J. Stat. Mech. Theory Exp., 2014(9):09016. https://doi.org/10.1088/1742-5468/2014/09/P09016

    Article  Google Scholar 

  21. Izmailian, N.S., Kenna, R., Wu, F.Y., 2014. The two-point resistance of a resistor network: a new formulation and application to the cobweb network. J. Phys. A, 47(3):035003. https://doi.org/10.1088/1751-8113/47/3/035003

    Article  Google Scholar 

  22. Kirchhoff, G., 1847. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys., 148(12):497–508 (in German). https://doi.org/10.1002/andp.18471481202

    Article  Google Scholar 

  23. Kirkpatrick, S., 1973. Percolation and conduction. Rev. Mod. Phys., 45(4):574–588. https://doi.org/10.1103/RevModPhys.45.574

    Article  Google Scholar 

  24. Klein, D.J., Randić, M., 1993. Resistance distance. J. Math. Chem., 12(1):81–95. https://doi.org/10.1007/BF01164627

    MathSciNet  Article  Google Scholar 

  25. Tan, Z.Z., 2011. Resistance Network Moder. Xidian University Press, Xi’an, China, p.28–146 (in Chinese).

    Google Scholar 

  26. Tan, Z.Z., 2015a. Recursion-transform approach to compute the resistance of a resistor network with an arbitrary boundary. Chin. Phys. B, 24(2):020503. https://doi.org/10.1088/1674-1056/24/2/020503

    Article  Google Scholar 

  27. Tan, Z.Z., 2015b. Recursion-transform method for computing resistance of the complex resistor network with three arbitrary boundaries. Phys. Rev. E, 91(5):052122. https://doi.org/10.1103/PhysRevE.91.052122

    MathSciNet  Article  Google Scholar 

  28. Tan, Z.Z., 2015c. Recursion-transform method to a nonregular m×n cobweb with an arbitrary longitude. Sci. Rep., 5:11266. https://doi.org/10.1038/srep11266

    Article  Google Scholar 

  29. Tan, Z.Z., 2017. Two-point resistance of a non-regular cylindrical network with a zero resistor axis and two arbitrary boundaries. Commun. Theor. Phys., 67(3):280–288. https://doi.org/10.1088/0253-6102/67/3/280

    Article  Google Scholar 

  30. Tan, Z.Z., Fang, J.H., 2015. Two-point resistance of a cobweb network with a 2r boundary. Commun. Theor. Phys., 63(1):36–44. https://doi.org/10.1088/0253-6102/63/1/07

    MathSciNet  Article  Google Scholar 

  31. Tan, Z.Z., Zhang, Q.H., 2015. Formulae of resistance between two corner nodes on a common edge of the m×n rectangular network. Int. J. Circ. Theory Appl., 43(7):944–958. https://doi.org/10.1002/cta.1988

    Article  Google Scholar 

  32. Tan, Z.Z., Zhang, Q.H., 2017. Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method. Acta Phys. Sin., 66(7):070501 (in Chinese). https://doi.org/10.7498/aps.66.070501

    Google Scholar 

  33. Tan, Z.Z., Zhou, L., Yang, J.H., 2013. The equivalent resistance of a 3×n cobweb network and its conjecture of an m×n cobweb network. J. Phys. A, 46:195202. https://doi.org/10.1088/1751-8113/46/19/195202

    MathSciNet  Article  Google Scholar 

  34. Tan, Z.Z., Essam, J.W., Wu, F.Y., 2014. Two-point resistance of a resistor network embedded on a globe. Phys. Rev. E, 90(1):012130. https://doi.org/10.1103/PhysRevE.90.012130

    Article  Google Scholar 

  35. Tzeng, W.J., Wu, F.Y., 2006. Theory of impedance networks: the two-point impedance and LC resonances. J. Phys. A: Math. Gen., 39(27):8579–8591. https://doi.org/10.1088/0305-4470/39/27/002

    MathSciNet  Article  Google Scholar 

  36. Whan, C.B., Lobb, C.J., 1996. Complex dynamical behavior in RCL shunted Josephson tunnel junctions. Phys. Rev. E, 53(1):405–413. https://doi.org/10.1103/PhysRevE.53.405

    Article  Google Scholar 

  37. Wu, F.Y., 2004. Theory of resistor networks: the two-point resistance. J. Phys. A, 37(26):6653–6673. https://doi.org/10.1088/0305-4470/37/26/004

    MathSciNet  Article  Google Scholar 

  38. Xiao, W.J., Gutman, I., 2003. Resistance distance and Laplacian spectrum. Theor. Chem. Acc., 110(4):284–289. https://doi.org/10.1007/s00214-003-0460-4

    Article  Google Scholar 

  39. Zhou, L., Tan, Z.Z., Zhang, Q.H., 2017. A fractional-order multifunctional n-step honeycomb RLC circuit network. Front. Inform. Technol. Electron. Eng., 18(8):1186–1196. https://doi.org/10.1631/FITEE.1601560

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Tan.

Additional information

Project supported by the Natural Science Foundation of Jiangsu Province, China (No. BK20161278)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, Zz., Zhu, H., Asad, J.H. et al. Characteristic of the equivalent impedance for an m×n RLC network with an arbitrary boundary. Frontiers Inf Technol Electronic Eng 18, 2070–2081 (2017). https://doi.org/10.1631/FITEE.1700037

Download citation

Key words

  • RLC network
  • Resonance properties
  • Oscillation characteristics
  • Amplitude-frequency

CLC number

  • O441.1
  • TN711.3