Advertisement

Kernel sparse representation for MRI image analysis in automatic brain tumor segmentation

  • Ji-jun Tong
  • Peng Zhang
  • Yu-xiang Weng
  • Dan-hua Zhu
Article
  • 38 Downloads

Abstract

The segmentation of brain tumor plays an important role in diagnosis, treatment planning, and surgical simulation. The precise segmentation of brain tumor can help clinicians obtain its location, size, and shape information. We propose a fully automatic brain tumor segmentation method based on kernel sparse coding. It is validated with 3D multiple-modality magnetic resonance imaging (MRI). In this method, MRI images are pre-processed first to reduce the noise, and then kernel dictionary learning is used to extract the nonlinear features to construct five adaptive dictionaries for healthy tissues, necrosis, edema, non-enhancing tumor, and enhancing tumor tissues. Sparse coding is performed on the feature vectors extracted from the original MRI images, which are a patch of m×m×m around the voxel. A kernel-clustering algorithm based on dictionary learning is developed to code the voxels. In the end, morphological filtering is used to fill in the area among multiple connected components to improve the segmentation quality. To assess the segmentation performance, the segmentation results are uploaded to the online evaluation system where the evaluation metrics dice score, positive predictive value (PPV), sensitivity, and kappa are used. The results demonstrate that the proposed method has good performance on the complete tumor region (dice: 0.83; PPV: 0.84; sensitivity: 0.82), while slightly worse performance on the tumor core (dice: 0.69; PPV: 0.76; sensitivity: 0.80) and enhancing tumor (dice: 0.58; PPV: 0.60; sensitivity: 0.65). It is competitive to the other groups in the brain tumor segmentation challenge. Therefore, it is a potential method in differentiation of healthy and pathological tissues.

Key words

Brain tumor segmentation Kernel method Sparse coding Dictionary learning 

CLC number

TP181 R739.41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors appreciate Bjoern MENZE et al. for sharing the data.

References

  1. Ahmadvand A, Daliri MR, 2015. Improving the runtime of MRF based method for MRI brain segmentation. Appl Math Comput, 256:808–818. https://doi.org/10.1016/j.amc.2015.01.053 MathSciNetzbMATHGoogle Scholar
  2. Atkins MS, Mackiewich BT, 1998. Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imag, 17(1):98–107. https://doi.org/10.1109/42.668699 CrossRefGoogle Scholar
  3. Bryt O, Elad M, 2008. Compression of facial images using the K-SVD algorithm. J Vis Commun Imag Represent, 19(4): 270–282. https://doi.org/10.1016/j.jvcir.2008.03.001 CrossRefGoogle Scholar
  4. Chen SS, Donoho DL, Saunders MA, 2001. Atomic decomposition by basis pursuit. SIAM Rev, 43(1):129–159. https://doi.org/10.1137/S003614450037906X MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chong VFH, Zhou JY, Khoo JBK, et al., 2004. Tongue carcinoma: tumor volume measurement. Int J Radiat Oncol Biol Phys, 59(1):59–66. https://doi.org/10.1016/j.ijrobp.2003.09.089 CrossRefGoogle Scholar
  6. Cristianini N, Shawe-Taylor J, 2000. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, p.189.CrossRefzbMATHGoogle Scholar
  7. Dong WS, Zhang L, Shi GM, 2011. Centralized sparse representation for image restoration. Proc IEEE Int Conf on Computer Vision, p.1259–1266. https://doi.org/10.1109/ICCV.2011.6126377 Google Scholar
  8. Duarte-Carvajalino JM, Sapiro G, 2009. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans Image Process, 18(7):1395–1408. https://doi.org/10.1109/TIP.2009.2022459 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Dvořák P, Menze B, 2015. Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. Proc Multimodal Brain Tumor Image Segmentation Challenge, p.13–24.Google Scholar
  10. Elad M, Aharon M, 2006a. Image denoising via learned dictionaries and sparse representation. Proc IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.895–900. https://doi.org/10.1109/CVPR.2006.142 Google Scholar
  11. Elad M, Aharon M, 2006b. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process, 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969 MathSciNetCrossRefGoogle Scholar
  12. Fletcher-Heath LM, Hall LO, Goldgof DB, et al., 2001. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med, 21(1-3): 43–63. https://doi.org/10.1016/S0933-3657(00)00073-7 CrossRefGoogle Scholar
  13. Gibbs P, Buckley DL, Blackband SJ, et al., 1996. Tumour volume determination from MR images by morphological segmentation. Phys Med Biol, 41(11):2437–2446. https://doi.org/0.1088/0031-9155/41/11/014 CrossRefGoogle Scholar
  14. Grosse R, Raina R, Kwong H, et al., 2012. Shift-invariance sparse coding for audio classification. http://arxiv.org/abs/1206.5241 Google Scholar
  15. He ZS, Cichocki A, Li YQ, et al., 2009. K-hyperline clustering learning for sparse component analysis. Signal Process, 89(6):1011–1022. https://doi.org/10.1016/j.sigpro.2008.12.005 CrossRefzbMATHGoogle Scholar
  16. Held K, Kops ER, Krause BJ, et al., 1997. Markov random field segmentation of brain MR images. IEEE Trans Med Imag, 16(6):878–886. https://doi.org/10.1109/42.650883 CrossRefGoogle Scholar
  17. Hyvärinen A, Hoyer P, Oja E, 1999. Image denoising by sparse code shrinkage. Proc Intelligent Signal Processing, p.1–31.Google Scholar
  18. Juan-Albarracin J, Fuster-Garcia E, Manjon JV, et al., 2015. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE, 10(5):e0125143. https://doi.org/10.1371/journal.pone.0125143 CrossRefGoogle Scholar
  19. Juergens KU, Seifarth H, Range F, et al., 2008. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. Am J Roentgenol, 190(2): 308–314. https://doi.org/10.2214/AJR.07.2283 CrossRefGoogle Scholar
  20. Kistler M, Bonaretti S, Pfahrer M, et al., 2013. The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med Int Res, 15(11): e245. https://doi.org/10.2196/jmir.2930 Google Scholar
  21. Kong YY, Li YJ, Wu JS, et al., 2016. Noise reduction of diffusion tensor images by sparse representation and dictionary learning. BioMed Eng, 15:5. https://doi.org/10.1186/s12938-015-0116-3 Google Scholar
  22. Liu J, Li M, Wang JX, et al., 2014. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol, 19(6):578–595. https://doi.org/10.1109/TST.2014.6961028 MathSciNetCrossRefGoogle Scholar
  23. Mairal J, Elad M, Sapiro G, 2008. Sparse representation for color image restoration. IEEE Trans Imag Process, 17(1):53–69. https://doi.org/10.1109/TIP.2007.911828 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Mairal J, Bach F, Ponce J, et al., 2009. Non-local sparse models for image restoration. Proc 12th Int Conf on Computer Vision, p.2272–2279. https://doi.org/10.1109/ICCV.2009.5459452 Google Scholar
  25. Menze BH, Jakab A, Bauer S, et al., 2015. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imag, 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694 CrossRefGoogle Scholar
  26. Mittelhäußer G, Kruggel F, 1995. Fast segmentation of brain magnetic resonance tomograms. Proc 1st Int Conf on Computer Vision, Virtual Reality and Robotics in Medicine, p.237-241. https://doi.org/10.1007/978-3-540-49197-2_27
  27. Nasir M, Baig A, Khanum A, 2014. Brain tumor classification in MRI scans using sparse representation. In: Elmoataz A, Lezoray O, Nouboud F, et al. (Eds.), Image and Signal Processing. Springer, Cham, p.629–637. https://doi.org/10.1007/978-3-319-07998-1_72 Google Scholar
  28. Olabarriaga SD, Smeulders AWM, 2001. Interaction in the segmentation of medical images: a survey. Med Imag Anal, 5(2):127–142. https://doi.org/10.1016/S1361-8415(00)00041-4 CrossRefGoogle Scholar
  29. Prastawa M, Bullitt E, Ho S, et al., 2004. A brain tumor segmentation framework based on outlier detection. Med Imag Anal, 8(3):275–283. https://doi.org/10.1016/j.media.2004.06.007 CrossRefGoogle Scholar
  30. Rathi VPGP, Palani S, 2015. Brain tumor detection and classification using deep learning classifier on MRI images. Res J Appl Sci Eng Technol, 10(2):177–187. https://doi.org/10.19026/rjaset.10.2570 Google Scholar
  31. Rousson M, Lenglet C, Deriche R, et al., 2004. Level set and region based surface propagation for diffusion tensor MRI segmentation. In: Sonka M, Kakadiaris IA, Kybic J (Eds.), Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. Springer Berlin Heidelberg, p.123–134. https://doi.org/10.1007/978-3-540-27816-0_11
  32. Ruan S, Bloyet D, 2000. MRF models and multifractal analysis for MRI segmentation. Proc 5th Int Conf on Signal Processing, p.1259-1262. https://doi.org/10.1109/ICOSP.2000.891775 Google Scholar
  33. Sachdeva J, Kumar V, Gupta I, et al., 2013. Segmentation, feature extraction, and multiclass brain tumor classification. J Dig Imag, 26(6):1141–1150. https://doi.org/10.1007/s10278-013-9600-0 CrossRefGoogle Scholar
  34. Salman Al-Shaikhli SD, Yang MY, Rosenhahn B, 2015. Brain tumor classification and segmentation using sparse coding and dictionary learning. BioMed Tech (Berl), 61(4): 413–429. https://doi.org/10.1515/bmt-2015-0071 CrossRefGoogle Scholar
  35. Salman YM, Assal MA, Badawi AM, et al., 2005. Validation techniques for quantitative brain tumors measurements. Proc 27th Annual Int Conf of the Engineering in Medicine and Biology Society, p.7048–7051. https://doi.org/10.1109/IEMBS.2005.1616129 Google Scholar
  36. Shanthi KJ, Kumar MS, 2007. Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. Proc Int Conf on Intelligent and Advanced Systems, p.422–426. https://doi.org/10.1109/ICIAS.2007.4658421SivaramGSVS Google Scholar
  37. Nemala SK, Elhilali M, et al., 2010. Sparse coding for speech recognition. Proc IEEE Int Conf on Acoustics, Speech and Signal Processing, p.4346-4349. https://doi.org/10.1109/ICASSP.2010.5495649 Google Scholar
  38. Sompong C, Wongthanavasu S, 2014. MRI brain tumor segmentation using GLCM cellular automata-based texture feature. Proc Int Computer Science and Engineering Conf, p.192–197. https://doi.org/10.1109/ICSEC.2014.6978193 Google Scholar
  39. Taheri S, Ong SH, Chong VFH, 2010. Level-set segmentation of brain tumors using a threshold-based speed function. Imag Vis Comput, 28(1):26–37. https://doi.org/10.1016/j.imavis.2009.04.005 CrossRefGoogle Scholar
  40. Thiagarajan JJ, Ramamurthy KN, Spanias A, 2011. Optimality and stability of the K-hyperline clustering algorithm. Patt Recogn Lett, 32(9):1299–1304. https://doi.org/10.1016/j.patrec.2011.03.005 CrossRefGoogle Scholar
  41. Thiagarajan JJ, Ramamurthy KN, Rajan D, et al., 2014. Kernel sparse models for automated tumor segmentation. Int J Artif Intell Tools, 23(3):1460004. https://doi.org/10.1142/S0218213014600045 CrossRefGoogle Scholar
  42. Tong T, Wolz R, Coupé P, et al., 2013. Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage, 76:11–23. https://doi.org/10.1016/j.neuroimage.2013.02.069 CrossRefGoogle Scholar
  43. Tustison N, Wintermark M, Durst C, et al., 2013. ANTs and arboles. Proc NCI-MICCAI BRATS, p.47–50.Google Scholar
  44. Wang ZZ, Vemuri BC, 2004. Tensor field segmentation using region based active contour model. In: Pajdla T, Matas J (Eds.), Computer Vision-ECCV. Springer Berlin Heidelberg, p.304–315. https://doi.org/10.1007/978-3-540-24673-2_25
  45. Wong K, 2005. Medical image segmentation: methods and applications in functional imaging. In: Suri JS, Wilson DL, Laxminarayan S (Eds.), Handbook of Biomedical Image Analysis, Volume II: Segmentation Models Part B. Springer, Boston, US, p.111–182. https://doi.org/10.1007/b104806
  46. Wu P, Xie K, Zheng Y, et al., 2012. Brain tumors classification based on 3D shape. In: Jin D, Lin S (Eds.), Advances in Future Computer and Control Systems. Springer, Berlin, p.277–283. https://doi.org/10.1007/978-3-642-29390-0_45
  47. Yang JC, Yu K, Gong YH, et al., 2009. Linear spatial pyramid matching using sparse coding for image classification. Proc IEEE Conf on Computer Vision and Pattern Recognition, p.1794–1801. https://doi.org/10.1109/CVPR.2009.5206757 Google Scholar
  48. Zeyde R, Elad M, Protter M, et al., 2012. On single image scale-up using sparse-representations. In: Boissonnat J, Chenin P, Cohen A, et al. (Eds.), Curves and Surfaces. Springer, Berlin, p.711–730. https://doi.org/10.1007/978-3-642-27413-8_47

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and TechnologyZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of Neurosurgery, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations