Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research

  • Ehab Ali
  • Mahamod Ismail
  • Rosdiadee Nordin
  • Nor Fadzilah Abdulah


Massive multiple-input multiple-output (MIMO) systems combined with beamforming antenna array technologies are expected to play a key role in next-generation wireless communication systems (5G), which will be deployed in 2020 and beyond. The main objective of this review paper is to discuss the state-of-the-art research on the most favourable types of beamforming techniques that can be deployed in massive MIMO systems and to clarify the importance of beamforming techniques in massive MIMO systems for eliminating and resolving the many technical hitches that massive MIMO system implementation faces. Classifications of optimal beamforming techniques that are used in wireless communication systems are reviewed in detail to determine which techniques are more suitable for deployment in massive MIMO systems to improve system throughput and reduce intra- and inter-cell interference. To overcome the limitations in the literature, we have suggested an optimal beamforming technique that can provide the highest performance in massive MIMO systems, satisfying the requirements of next-generation wireless communication systems.

Key words

Beamforming classifications Massive MIMO Hybrid beamforming Millimetre-wave beamforming 

CLC number



  1. Ahmadi, H., Farhang, A., Marchetti, N., et al., 2016. A game theoretic approach for pilot contamination avoidance in massive MIMO. IEEE Wirel. Commun. Lett., 5(1): 12–15. Scholar
  2. Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6): 1065–1082. Scholar
  3. Arablouei, R., Dogancay, K., 2012. Linearly-constrained recursive total least-squares algorithm. IEEE Signal Process. Lett., 19(12): 821–824. Scholar
  4. Arunitha, A., Gunasekaran, T., Kumar, N.S., et al., 2015. Adaptive beam forming algorithms for MIMO antenna. Int. J. Innov. Technol. Explor. Eng., 14(8): 9–12.Google Scholar
  5. Ashikhmin, A., Marzetta, T., 2012. Pilot contamination precoding in multi-cell large scale antenna systems. IEEE Int. Symp. on Information Theory Proc., p.1137–1141. Scholar
  6. Bae, J.S., Choi, Y.S., Kim, J.S., et al., 2014. Architecture and performance evaluation of mmwave based 5G mobile communication system. Int. Conf. on Information and Communication Technology Convergence, p.847–851. Scholar
  7. Barua, S., Lam, S.C., Ghosa, P., et al., 2015. A survey of direction of arrival estimation techniques and implementation of channel estimation based on SCME. 12th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, p.1–5. Scholar
  8. Behjati, M., Ismail, M., Nordin, R., 2015. Limited feedback MU-MIMO in LTE-A system: concepts, performance, and future works. Wirel. Pers. Commun., 84(2): 935–957. Scholar
  9. Bhotto, M.Z.A., Bajić, I.V., 2015. Constant modulus blind adaptive beamforming based on unscented Kalman filtering. IEEE Signal Process. Lett., 22(4): 474–478. Scholar
  10. Björnson, E., Sanguinetti, L., Hoydis, J., et al., 2014. Designing multi-user MIMO for energy efficiency: when is massive MIMO the answer? IEEE Wireless Communications and Networking Conf., p.242–247. Scholar
  11. Bogale, T.E., Le, L.B., 2014. Beamforming for multiuser massive MIMO systems: digital versus hybrid analogdigital. IEEE Global Communications Conf., p.4066–4071. Scholar
  12. Bogale, T.E., Le, L.B., 2015. Massive MIMO and millimeter wave for 5G wireless HetNet: potentials and challenges. arXiv:1510.06359.Google Scholar
  13. Bogale, T.E., Le, L.B., Haghighat, A., 2015. User scheduling for massive MIMO OFDMA systems with hybrid analogdigital beamforming. IEEE Int. Conf. on Communications, p.1757–1762. Scholar
  14. Bogale, T.E., Le, L.B., Haghighat, A., et al., 2016. On the number of RF chains and phase shifters, and scheduling design with hybrid analog–digital beamforming. IEEE Trans. Wirel. Commun., 15(5): 3311–3326. Scholar
  15. Butler, J., Ralph, L., 1961. Beam-forming matrix simplifies design of electronically scanned antennas. Electron. Des., 9: 170–173.Google Scholar
  16. Carlson, B.D., 1988. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., 24(4): 397–401. Scholar
  17. Carton, I., Fan, W., Pedersen, G.F., 2015. A frequency invariant beamformer for channel parameter estimation in millimeter wave bands. Int. Symp. on Antennas and Propagation, p.1–4.Google Scholar
  18. Chen, C.E., 2015. An iterative hybrid transceiver design algorithm for millimeter wave MIMO systems. IEEE Wirel. Commun. Lett., 4(3): 285–288. Scholar
  19. Chen, X.M., Zhang, Z.Y., Chen, H.H., et al., 2015. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag., 53(4): 133–141. Scholar
  20. Chuang, S.F., Wu, W.R., Liu, Y.T., 2015. High-resolution AoA estimation for hybrid antenna arrays. IEEE Trans. Antennas Propag., 63(7): 2955–2968. Scholar
  21. Cudak, M., Ghosh, A., Kovarik, T., et al., 2013. Moving towards mmwave-based beyond-4G (B-4G) technology. IEEE 77th Vehicular Technology Conf., p.1–5. Scholar
  22. Dai, L.L., Gao, X.Y., Quan, J.G., et al., 2015a. Near-optimal hybrid analog and digital precoding for downlink mmwave massive MIMO systems. IEEE Int. Conf. on Communications, p.1334–1339. Scholar
  23. Dai, L.L., Gao, X.Y., Wang, Z.C., 2015b. Energy-efficient hybrid precoding based on successive interference cancelation for millimeter-wave massive MIMO systems. IEEE Radio and Antenna Days of the Indian Ocean, p.1–2. Scholar
  24. Dai, M.B., Clerckx, B., 2016. Hybrid precoding for physical layer multicasting. IEEE Commun. Lett., 20(2): 228–231. Scholar
  25. Darzi, S., Kiong, T.S., Islam, M.T., et al., 2014. Null steering of adaptive beamforming using linear constraint minimum variance assisted by particle swarm optimization, dynamic mutated artificial immune system, and gravitational search algorithm. Sci. World J., Article ID 724639. Scholar
  26. Darzi, S., Kiong, T.S., Islam, M.T., et al., 2016. A memorybased gravitational search algorithm for enhancing minimum variance distortionless response beamforming. Appl. Soft Comput., 47: 103–118. Scholar
  27. de Carvalho, E., Björnson, E., Larsson, E.G., et al., 2016. Random access for massive MIMO systems with intracell pilot contamination. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3361–3365. Scholar
  28. Frost, O.L., 1972. An algorithm for linearly constrained adaptive array processing. Proc. IEEE, 60(8): 926–935. Scholar
  29. Garcia, N., Wymeersch, H., Larsson, E.G., et al., 2017. Direct localization for massive MIMO. IEEE Trans. Signal Process., 65(10): 2475–2487. Scholar
  30. Ghauch, H., Kim, T., Bengtsson, M., et al., 2016. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3): 528–542. Scholar
  31. Gotsis, K.A., Sahalos, J.N., 2011. Beamforming in 3G and 4G mobile communications: the switched-beam approach. In: Maícas, J.P. (Ed.), A Multidisciplinary Approach. InTech, p.201–216.Google Scholar
  32. Gozalves, J., 2016. Fifth-generation technologies trials [Mobile Radio]. IEEE Veh. Technol. Mag., 11(2): 5–13. Scholar
  33. Gross, F., 2005. Smart Antennas for Wireless Communications. McGraw-Hill Professional.Google Scholar
  34. Guerra, A., Guidi, F., Dardari, D., 2015. Position and orientation error bound for wideband massive antenna arrays. IEEE Int. Conf. on Communication Workshop, p.853–858. Scholar
  35. Guney, K., Onay, M., 2007. Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm. Progr. Electromagn. Res., 70: 21–36. Scholar
  36. Guo, K.F., Guo, Y., Ascheid, G., 2015. Distributed antennas aided secure communication in MU-massive-MIMO with QoS guarantee. IEEE 82nd Vehicular Technology Conf., p.1–7. Scholar
  37. Haghighat, A., 2014. Hybrid analog-digital beamforming: how many RF chains and phase shifters do we need? arXiv:1410.2609.Google Scholar
  38. He, Q., Xiao, L.M., Zhong, X.F., et al., 2014. Performance of massive MIMO with zero-forcing beamforming and reduced downlink pilots. Int. Symp. on Wireless Personal Multimedia Communications, p.690–695. Scholar
  39. He, S.W., Huang, Y.M., Yang, L.X., et al., 2015. Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive MIMO transition. IEEE Trans. Commun., 63(12): 4920–4935. Scholar
  40. Heath, R.W., Gonzalez-Prelcic, N., Rangan, S., et al., 2016. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal Process., 10(3): 436–453. Scholar
  41. Hu, A.Z., 2016. DOA-based beamforming for multi-cell massive MIMO systems. J. Commun. Networks, 18(5): 735–743. Scholar
  42. Hu, A.Z., Lv, T.J., Gao, H., et al., 2013. Pilot design for large-scale multi-cell multiuser MIMO systems. IEEE Int. Conf. on Communications, p.5381–5385. Scholar
  43. Huang, L., Zhang, B., Ye, Z.F., 2015. Robust adaptive beamforming using a new projection approach. IEEE Int. Conf. on Digital Signal Processing, p.1181–1185. Scholar
  44. Huang, Z.E., Pan, J.Y., 2015. Coordinative switch beamforming scheduler for guaranteed service with service area subsectorization in next generation cellular network. IEEE Wireless Communications and Networking Conf., p.1000–1005. Scholar
  45. Huh, H., Caire, G., Papadopoulos, H.C., et al., 2012. Achieving “massive MIMO” spectral efficiency with a not-solarge number of antennas. IEEE Trans. Wirel. Commun., 11(9): 3226–3239. Scholar
  46. Hur, S., Kim, T., Love, D.J., et al., 2013. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans. Commun., 61(10): 4391–4403. Scholar
  47. Ismail, M., Doumi, T.L., Gardiner, J.G., 1999. Performance enhancement of cellular topologies employing dynamic cell sectoring and base station antenna beam steering using time division multiple access. J. Kejurut., 11(1).Google Scholar
  48. Jamel, T.M., 2015. Performance enhancement of adaptive beamforming algorithms based on a combination method. 12th Int. Multi-conf. on Systems, Signals and Devices, p.1–6. Scholar
  49. Jin, S., Wang, X.Y., Li, Z., et al., 2014. Zero-forcing beamforming in massive MIMO systems with time-shifted pilots. IEEE Int. Conf. on Communications, p.4801–4806. Scholar
  50. Jin, S., Wang, X.Y., Li, Z., et al., 2016. On massive MIMO zero-forcing transceiver using time-shifted pilots. IEEE Trans. Veh. Technol., 65(1): 59–74. Scholar
  51. Ju, M.Y., Qian, J., Li, Y.H., et al., 2013. Comparison of multiuser MIMO systems with MF, ZF and MMSE receivers. IEEE Int. Conf. on Information Science and Technology, p.1260–1263. Scholar
  52. Kammoun, A., Müller, A., Björnson, E., et al., 2014. Linear precoding based on polynomial expansion: large-scale multi-cell MIMO systems. IEEE J. Sel. Topics Signal Process., 8(5): 861–875. Scholar
  53. Khan, M.R.R., Tuzlukov, V., 2011. Null steering beamforming for wireless communication system using genetic algorithm. IEEE Int. Conf. on Microwave Technology and Computational Electromagnetics, p.289–292. Scholar
  54. Kiani, S., Pezeshk, A.M., 2015. A comparative study of several array geometries for 2D DOA estimation. Proc. Comput. Sci., 58: 18–25. Scholar
  55. Kim, C., Kim, T., Seol, J.Y., 2013. Multi-beam transmission diversity with hybrid beamforming for MIMO-OFDM systems. IEEE Globecom Workshops, p.61–65. Scholar
  56. Kutty, S., Sen, D., 2016. Beamforming for millimeter wave communications: an inclusive survey. IEEE Commun. Surv. Tutor., 18(2): 949–973. Scholar
  57. Larsson, E.G., Edfors, O., Tufvesson, F., et al., 2014. Massive MIMO for next generation wireless systems. IEEE Commun. Mag., 52(2): 186–195. Scholar
  58. Le, T.V.T., Kim, Y.H., 2015. Power and spectral efficiency of multi-pair massive antenna relaying systems with zeroforcing relay beamforming. IEEE Commun. Lett., 19(2): 243–246. Scholar
  59. Lee, G., Sung, Y., Kountouris, M., 2015. On the performance of randomly directional beamforming between line-ofsight and rich scattering channels. IEEE 16th Int. Workshop on Signal Processing Advances in Wireless Communications, p.141–145. Scholar
  60. Li, H.M., Leung, V.C.M., 2013. Low complexity zero-forcing beamforming for distributed massive MIMO systems in large public venues. J. Commun. Networks, 15(4): 370–382. Scholar
  61. Li, M., Collings, I.B., Hanly, S.V., et al., 2016. Multicell coordinated scheduling with multiuser zero-forcing beamforming. IEEE Trans. Wirel. Commun., 15(2): 827–842. Scholar
  62. Li, N.X., Wei, Z.X., Geng, J., et al., 2014. Multiuser hybrid beamforming for max-min SINR problem under 60 GHz wireless channel. IEEE 25th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communication, p.123–128. Scholar
  63. Liang, L., Xu, W., Dong, X.D., 2014. Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wirel. Commun. Lett., 3(6): 653–656. Scholar
  64. Liao, B., Chan, S.C., 2011. DOA estimation of coherent signals for uniform linear arrays with mutual coupling. IEEE Int. Symp. on Circuits and Systems, p.377–380. Scholar
  65. Liao, W.C., Chang, T.H., Ma, W.K., et al., 2011. QoS-based transmit beamforming in the presence of eavesdroppers: an optimized artificial-noise-aided approach. IEEE Trans. Signal Process., 59(3): 1202–1216. Scholar
  66. Liu, D.L., Ma, W.Z., Shao, S.H., et al., 2016. Performance analysis of TDD reciprocity calibration for massive MU-MIMO systems with ZF beamforming. IEEE Commun. Lett., 20(1): 113–116. Scholar
  67. Liu, G.Y., Hou, X.Y., Wang, F., et al., 2016. Achieving 3D-MIMO with massive antennas from theory to practice with evaluation and field trial results. IEEE Syst. J., 11(1): 62–71. Scholar
  68. Liu, J., Liu, W.J., Liu, H.W., et al., 2016. Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Trans. Signal Process., 64(8): 2135–2145. Scholar
  69. Liu, W., Weiss, S., 2010. Wideband Beamforming: Concepts and Techniques. John Wiley & Sons, UK. Scholar
  70. Lu, L., Li, G.Y., Swindlehurst, A.L., et al., 2014. An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Topics Signal Process., 8(5): 742–758. Scholar
  71. Masouros, C., Sellathurai, M., Ratnarajah, T., 2013. A low-complexity sequential encoder for threshold vector perturbation. IEEE Commun. Lett., 17(12): 2225–2228. Scholar
  72. Mazrouei-Sebdani, M., Krzymień, W.A., Melzer, J., 2016. Massive MIMO with nonlinear precoding: large-system analysis. IEEE Trans. Veh. Technol., 65(4): 2815–2820. Scholar
  73. Medbo, J., Börner, K., Haneda, K., et al., 2014. Channel modelling for the fifth generation mobile communications. 8th European Conf. on Antennas and Propagation, p.219–223. Scholar
  74. Murray, B.P., Zaghloul, A.I., 2014. A survey of cognitive beamforming techniques. United States National Committee of URSI National Radio Science Meeting, p.1. 7993Google Scholar
  75. Ngo, H.Q., Larsson, E.G., 2013. Spectral efficiency of the multipair two-way relay channel with massive arrays. Asilomar Conf. on Signals, Systems and Computers, p.275–279. Scholar
  76. Ngo, H.Q., Marzetta, T.L., Larsson, E.G., 2011. Analysis of the pilot contamination effect in very large multicell multiuser MIMO systems for physical channel models. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3464–3467. Scholar
  77. Noh, S., Zoltowski, M.D., Love, D.J., 2016. Training sequence design for feedback assisted hybrid beamforming in massive MIMO systems. IEEE Trans. Commun., 64(1): 187–200. Scholar
  78. Oumar, O.A., Siyau, M.F., Sattar, T.P., 2012. Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems. Int. Conf. on Future Generation Communication Technology, p.99–103. Scholar
  79. Pradhan, B.B., Roy, L.P., 2014. MIMO beamforming in spatially and temporally correlated channel. Annual IEEE India Conf., p.1–5. Scholar
  80. Rappaport, T.S., Sun, S., Mayzus, R., et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1: 335–349. Scholar
  81. Rasekh, M., Seydnejad, S.R., 2014. Design of an adaptive wideband beamforming algorithm for conformal arrays. IEEE Commun. Lett., 18(11): 1955–1958. Scholar
  82. Ren, H., Arigong, B., Zhou, M., et al., 2016. A novel design of 4 × 4 Butler matrix with relatively flexible phase differences. IEEE Antennas Wirel. Propag. Lett., 15: 1277–1280. Scholar
  83. Roh, W., Seol, J.Y., Park, J., et al., 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag., 52(2): 106–113. Scholar
  84. Rusek, F., Persson, D., Lau, B.K., et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag., 30(1): 40–60. Scholar
  85. Shang, G.W., Li, H., 2015. Spatial domain method based on 2D-DoA estimation against pilot contamination for multicell massive MIMO systems. Int. Conf. on Wireless Communications and Signal Processing, p.1–5. Scholar
  86. Sivasundarapandian, S., 2015. Performance analysis of multiband multiple beamforming Butler matrix for smart antenna systems. Int. Conf. on Robotics, Automation, Control and Embedded Systems, p.1–5. Scholar
  87. Sohrabi, F., Yu, W., 2016. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J. Sel. Topics Signal Process., 10(3): 501–513. Scholar
  88. Sun, S., Rappaport, T.S., Heath, R.W., et al., 2014. MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun. Mag., 52(12): 110–121. Scholar
  89. Swindlehurst, A.L., Ayanoglu, E., Heydari, P., et al., 2014. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun. Mag., 52(9): 56–62. Scholar
  90. Tiwari, N., Rao, T.R., 2015. A switched beam antenna array with Butler matrix network using substrate integrated waveguide technology for 60 GHz communications. Int. Conf. on Advances in Computing, Communications and Informatics, p.2152–2157. Scholar
  91. Venkateswaran, V., van der Veen, A.J., 2010. Analog beamforming in MIMO communications with phase shift networks and online channel estimation. IEEE Trans. Signal Process., 58(8): 4131–4143. Scholar
  92. Vincent, F., Besson, O., 2004. Steering vector errors and diagonal loading. IEEE Proc.-Radar Sonar Navig., 151(6): 337–343. Scholar
  93. Vorobyov, S.A., Gershman, A.B., Luo, Z.Q., 2002. Robust adaptive beamforming using worst-case performance optimization via second-order cone programming. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, p.2901–2904. Scholar
  94. Vouyioukas, D., 2013. A survey on beamforming techniques for wireless MIMO relay networks. Int. J. Antennas Propag., 2013: 1–21. Scholar
  95. Wagner, S., Couillet, R., Debbah, M., et al., 2012. Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback. IEEE Trans. Inform. Theory, 58(7): 4509–4537. Scholar
  96. Wang, H.L., Pan, Z.G., Ni, J.Q., et al., 2013. A spatial domain based method against pilot contamination for multi-cell massive MIMO systems. Int. ICST Conf. on Communications and Networking in China, p.218–222. Scholar
  97. Wu, X.M., Cai, Y.L., de Lamare, R.C., et al., 2015. Adaptive blind widely linear CCM reduced-rank beamforming for large-scale antenna arrays. IEEE Int. Conf. on Digital Signal Processing, p.5–9. Scholar
  98. WWRF, 2014. 5G Vision and Requirements. IMT-2020(5G) Promotion Group, China.Google Scholar
  99. Yan, L., Fang, X.M., Zhong, S., 2014. Quasi-full-duplex wireless communication scheme for high-speed railway. IEEE 80th Vehicular Technology Conf., p.1–6. Scholar
  100. Yang, H., Marzetta, T.L., 2013a. Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun., 31(2): 172–179. Scholar
  101. Yang, H., Marzetta, T.L., 2013b. Total energy efficiency of cellular large scale antenna system multiple access mobile networks. IEEE Online Conf. on Green Communications, p.27–32. Scholar
  102. Yang, H., Marzetta, T.L., 2015. Energy efficient design of massive MIMO: how many antennas? IEEE 81st Vehicular Technology Conf., p.1–5. Scholar
  103. Yang, P., Yang, F., Nie, Z.P., 2010. DOA estimation with sub-array divided technique and interpolated ESPRIT algorithm on a cylindrical conformal array antenna. Progr. Electromagn. Res., 103: 201–216. Scholar
  104. Yin, H.F., Gesbert, D., Filippou, M.C., et al., 2013. Decontaminating pilots in massive MIMO systems. IEEE Int. Conf. on Communications, p.3170–3175. Scholar
  105. Yin, H.F., Cottatellucci, L., Gesbert, D., et al., 2016. Robust pilot decontamination based on joint angle and power domain discrimination. IEEE Trans. Signal Process., 64(11): 2990–3003. Scholar
  106. Ying, D.W., Vook, F.W., Thomas, T.A., et al., 2015. Hybrid structure in massive MIMO: achieving large sum rate with fewer RF chains. IEEE Int. Conf. on Communications, p.2344–2349. Scholar
  107. Zhang, R.N., Wang, S.C., Lu, X.F., et al., 2016. Twodimensional DoA estimation for multipath propagation characterization using the array response of PNsequences. IEEE Trans. Wirel. Commun., 15(1): 341–356. Scholar
  108. Zou, L., He, Z.S., 2013. MVDR method for the whole conformal arrays. In: Du, Z. (Ed.), Intelligence Computation and Evolutionary Computation. Advances in Intelligent Systems and Computing, Vol. 180. Springer, Berlin, Heidelberg. Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Ehab Ali
    • 1
  • Mahamod Ismail
    • 1
  • Rosdiadee Nordin
    • 1
  • Nor Fadzilah Abdulah
    • 1
  1. 1.Department of Electrical, Electronic and System EngineeringUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations