On-chip optical interconnect using visible light

  • Wei Cai
  • Bing-cheng Zhu
  • Xu-min Gao
  • Yong-chao Yang
  • Jia-lei Yuan
  • Gui-xia Zhu
  • Yong-jin Wang
  • Peter Grünberg


We propose and fabricate a monolithic optical interconnect on a GaN-on-silicon platform using a wafer-level technique. Because the InGaN/GaN multiple-quantum-well diodes (MQWDs) can achieve light emission and detection simultaneously, the emitter and collector sharing identical MQW structure are produced using the same process. Suspended waveguides interconnect the emitter with the collector to form in-plane light coupling. Monolithic optical interconnect chip integrates the emitter, waveguide, base, and collector into a multi-component system with a common base. Output states superposition and 1×2 in-plane light communication are experimentally demonstrated. The proposed monolithic optical interconnect opens a promising way toward the diverse applications from in-plane visible light communication to light-induced artificial synaptic devices, intelligent display, on-chip imaging, and optical sensing.

Key words

Homogeneous integration Multiple-quantum-well diode Visible light interconnection Coexistence of light emission and photodetection 

CLC number

TN491 E963 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, D., Wu, T., Li, X., et al., 2016. Suspended GaN-based nanostructure for integrated optics. Appl. Phys. B, 122(1):1–7. https://doi.org/10.1007/s00340-015-6293-8CrossRefGoogle Scholar
  2. Brubaker, M.D., Blanchard, P.T., Schlager, J.B., et al., 2013. On-chip optical interconnects made with gallium nitride nanowires. Nano Lett., 13(2):374–377. https://doi.org/10.1021/nl303510hCrossRefGoogle Scholar
  3. Cai, W., Gao, X., Yuan, W., et al., 2016a. Integrated p-n junction InGaN/GaN multiple-quantum-well devices with diverse functionalities. Appl. Phys. Expr., 9(5):052204. https://doi.org/10.7567/APEX.9.052204CrossRefGoogle Scholar
  4. Cai, W., Yang, Y., Gao, X., et al., 2016b. On-chip integration of suspended InGaN/GaN multiple-quantum-well devices with versatile functionalities. Opt. Expr., 24(6): 6004–6010. https://doi.org/10.1364/OE.24.006004CrossRefGoogle Scholar
  5. Cao, X., Yue, T., Lin, X., et al., 2016. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world. IEEE Signal Process. Mag., 33(5): 95–108. https://doi.org/10.1109/MSP.2016.2582378CrossRefGoogle Scholar
  6. Chen, R., Tran, T.T.D., Ng, K.W., et al., 2011. Nanolasers grown on silicon. Nat. Photon., 5(3):170–175. https://doi.org/10.1038/nphoton.2010.315CrossRefGoogle Scholar
  7. Dai, Q., 2017. Functional imaging of one million neurons at synaptic resolution simultaneously with a novel videorate, sub-gigapixel microscopy at centimeter scale fieldof-view, sub-micron resolution. CSH Asia Conf. on Primate Neuroscience: Perception, Cognition and Disease Models, in press.Google Scholar
  8. Feng, M., Holonyak, N.Jr, Hafez, W., 2004. Light-emitting transistor: light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett., 84(1): 151–153. https://doi.org/10.1063/1.1637950CrossRefGoogle Scholar
  9. Jhou, Y., Chen, C.H., Chuang, R.W.K., et al., 2005. Nitridebased light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures. Solid-State Electron., 49(8):1347–1351. https://doi.org/10.1016/j.sse.2005.06.002CrossRefGoogle Scholar
  10. Jiang, Z., Atalla, M.R., You, G., et al., 2014. Monolithic integration of nitride light emitting diodes and photodetectors for bi-directional optical communication. Opt. Lett., 39(19):5657–5660. https://doi.org/10.1364/OL.39.005657CrossRefGoogle Scholar
  11. Krost, A., Dadgar, A., 2002. GaN-based optoelectronics on silicon substrates. Mat. Sci. Eng. B, 93(1):77–84. https://doi.org/10.1016/S0921-5107(02)00043-0CrossRefGoogle Scholar
  12. Kuykendall, T., Ulrich, P., Aloni, S., et al., 2007. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater., 6(12):951–956. https://doi.org/10.1038/nmat2037CrossRefGoogle Scholar
  13. Li, X., Shi, Z., Zhu, G., et al., 2014. High efficiency membrane light emitting diode fabricated by back wafer thinning technique. Appl. Phys. Lett., 105(3):2211–2213. https://doi.org/10.1063/1.4890859Google Scholar
  14. Li, X., Zhu, G., Gao, X., et al., 2015. Suspended p-n junction InGaN/GaN multiple-quantum-well device with selectable functionality. IEEE Photon. J., 7(6):1–7. https://doi.org/10.1109/JPHOT.2015.2499544Google Scholar
  15. Liao, C.L., Ho, C.L., Chang, Y.F., et al., 2014. High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth. IEEE Electron Dev. Lett., 35(5):563–565. https://doi.org/10.1109/LED.2014.2304513CrossRefGoogle Scholar
  16. McKendry, J.J., Massoubre, D., Zhang, S., et al., 2012. Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightw. Technol., 30(1):61–67. https://doi.org/10.1109/JLT.2011.2175090CrossRefGoogle Scholar
  17. Noda, S., Fujita, M., 2009. Light-emitting diodes: photonic crystal efficiency boost. Nat. Photon., 3(3):129–130. https://doi.org/10.1038/nphoton.2009.15CrossRefGoogle Scholar
  18. Qian, F., Li, Y., Gradečak, S., et al., 2008. Multiquantum- well nanowire heterostructures for wavelengthcontrolled lasers. Nat. Mater., 7(9):701–706. https://doi.org/10.1038/nmat2253CrossRefGoogle Scholar
  19. Sato, T., Takeda, K., Shinya, A., et al., 2015. Photonic crystal lasers for chip-to-chip and on-chip optical interconnects. IEEE J. Sel. Top. Quant. Electron., 21(6):728–737. https://doi.org/10.1109/JSTQE.2015.2420991CrossRefGoogle Scholar
  20. Schubert, E.F., Gessmann, T., Kim, J.K., 2005. Light Emitting Diodes. John Wiley & Sons, Inc. https://dx.doi.org/10.1002/0471238961. 1209070811091908.a01.pub2Google Scholar
  21. Sekiya, T., Sasaki, T., Hane, K., 2015. Design, fabrication, and optical characteristics of freestanding GaN waveguides on silicon substrate. J. Vac. Sci. Technol. B, 33(3):031207. https://doi.org/10.1116/1.4917487CrossRefGoogle Scholar
  22. Shokhovets, S., Himmerlich, M., Kirste, L., et al., 2015. Birefringence and refractive indices of wurtzite GaN in the transparency range. Appl. Phys. Lett., 107(9):092104. https://doi.org/10.1063/1.4929976CrossRefGoogle Scholar
  23. Sun, C., Wade, M.T., Lee, Y., et al., 2015. Single-chip microprocessor that communicates directly using light. Nature, 528(7583):534–538. https://doi.org/10.1038/nature16454CrossRefGoogle Scholar
  24. Tchernycheva, M., Messanvi, A., de Luna Bugallo, A., et al., 2014. Integrated photonic platform based on InGaN/GaN nanowire emitters and detectors. Nano Lett., 14(6):3515–3520. https://doi.org/10.1021/nl501124sCrossRefGoogle Scholar
  25. Triviño, N.V., Butte, R., Carlin, J.F., et al., 2015. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett., 15(2):1259–1263. https://doi.org/10.1021/nl504432dCrossRefGoogle Scholar
  26. van Zeghbroeck, B., Harder, C., Meier, H.P., et al., 1989. Photon transport transistor. Int. Technical Digest on Electron Devices Meeting, p.543–546. https://doi.org/10.1109/IEDM.1989.74340Google Scholar
  27. Vučić, J., Kottke, C., Nerreter, S., et al., 2010. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightw. Technol., 28(24):3512–3518. https://doi.org/10.1109/JLT.2010.2089602Google Scholar
  28. Wang, Y., Zhu, G., Cai, W., et al., 2016. On-chip photonic system using suspended pn junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett., 108(16):162102. https://doi.org/10.1063/1.4947280CrossRefGoogle Scholar
  29. Wierer, J.J., David, A., Megens, M.M., 2009. III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photon., 3(3):163–169. https://doi.org/10.1038/nphoton.2009.21CrossRefGoogle Scholar
  30. Yang, Y., Zhu, B., Shi, Z., et al., 2017. Multi-dimensional spatial light communication made with on-chip InGaN photonic integration. Opt. Matt., 66:659–663. https://doi.org/10.1016/j.optmat.2017.03.017CrossRefGoogle Scholar
  31. Yuan, J., Cai, W., Gao, X., et al., 2016. Monolithic integration of a suspended light-emitting diode with a Y-branch structure. Appl. Phys. Expr., 9(3):032202. https://doi.org/10.7567/APEX.9.032202CrossRefGoogle Scholar
  32. Zhang, Y., Oka, T., Suzuki, R., et al., 2014. Electrically switchable chiral light-emitting transistor. Science, 344(6185):725–728. https://doi.org/10.1126/science.1251329CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Peter Grünberg Research CenterNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.School of Computer EngineeringNanjing Institute of TechnologyNanjingChina

Personalised recommendations