Abstract
The problem of self-tuning control with a two-manipulator system holding a rigid object in the presence of inaccurate translational base frame parameters is addressed. An adaptive robust neural controller is proposed to cope with inaccurate translational base frame parameters, internal force, modeling uncertainties, joint friction, and external disturbances. A radial basis function neural network is adopted for all kinds of dynamical estimation, including undesired internal force. To validate the effectiveness of the proposed approach, together with simulation studies and analysis, the position tracking errors are shown to asymptotically converge to zero, and the internal force can be maintained in a steady range. Using an adaptive engine, this approach permits accurate online calibration of the relative translational base frame parameters of the involved manipulators. Specialized robust compensation is established for global stability. Using a Lyapunov approach, the controller is proved robust in the face of inaccurate base frame parameters and the aforementioned uncertainties.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aghili F, 2011. Self-tuning cooperative control of manipulators with position/orientation uncertainties in the closedkinematic loop. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.4187–4193. https://doi.org/10.1109/IROS.2011.6094470
Aghili F, 2013. Adaptive control of manipulators forming closed kinematic chain with inaccurate kinematic model. IEEE/ASME Trans Mechatron, 18(5):1544–1554. https://doi.org/10.1109/tmech.2012.2207964
Cheah CC, Liu C, Slotine J, 2004. Approximate Jacobian adaptive control for robot manipulators. IEEE Int Conf on Robtics and Automation, p.3075–3080. https://doi.org/10.1109/ROBOT.2004.1307529
Cheah CC, Liu C, Slotine JJE, 2006. Adaptive Jacobian tracking control of robots with uncertainties in kinematic, dynamic and actuator models. IEEE Trans Autom Contr, 51(6):1024–1029. https://doi.org/10.1109/TAC.2006.876943
Cheng L, Hou ZG, Tan M, 2009. Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model. Automatica, 45(10):2312–2318. https://doi.org/10.1016/j.automatica.2009.06.007
Corke P, 1996. A robotics toolbox for Matlab. IEEE Robot Autom Mag, 3(1):24–32. https://doi.org/10.1109/100.486658
Deng H, Wu H, Yang C, et al., 2015. Base frame calibration for multi-robot coordinated systems. IEEE Int Conf on Robotics and Biomimetics, p.1489–1494. https://doi.org/10.1109/ROBIO.2015.7418981
Erhart S, Hirche S, 2013. Adaptive force/velocity control for multi-robot cooperative manipulation under uncertain kinematic parameters. IEEE/RSJ Int Conf on Intelligent Robots and Systems, p.307–314. https://doi.org/10.1109/IROS.2013.6696369
Gan Y, Dai X., 2011. Base frame calibration for coordinated industrial robots. Robot Auton Syst, 59(7-8):563–570. https://doi.org/10.1016/j.robot.2011.04.003
Gueaieb W, Al-Sharhan S, Bolic M, 2007a. Robust computationally efficient control of cooperative closed-chain manipulators with uncertain dynamics. Automatica, 43(5): 842–851. https://doi.org/10.1016/j.automatica.2006.10.025
Gueaieb W, Karray F, Al-Sharhan S, 2007b. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Trans Mechatron, 12(2):109–125. https://doi.org/10.1109/TMECH.2007.892820
Lewis F, Jagannathan S, Yesildirak A, 1998. Neural Network Control of Robot Manipulators and Non-linear Systems. CRC Press, France, p.1–468.
Li Z, Xiao S, Ge SS, et al., 2015. Constrained multilegged robot system modeling and fuzzy control with uncertain kinematics and dynamics incorporating foot force optimization. IEEE Trans Syst Man Cybern Syst, 46(1):1–15. https://doi.org/10.1109/TSMC.2015.2422267
Liu JF, Abdel-Malek K, 2000. Robust control of planar dualarm cooperative manipulators. Robot Comput-Integr Manuf, 16(2):109–119. https://doi.org/10.1016/S0736-5845(99)00043-5
Liu YC, 2015. Distributed synchronization for heterogeneous robots with uncertain kinematics and dynamics under switching topologies. J Franklin Instit, 352(9):3808–3826. https://doi.org/10.1016/j.jfranklin.2014.11.018
Liu YC, Khong MH, 2015. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE/ASME Trans Mechatron, 20(5):2550–2562. https://doi.org/10.1109/TMECH.2015.2388555
Lizarralde F, Leite AC, Hsu L, et al., 2013. Adaptive visual servoing scheme free of image velocity measurement for uncertain robot manipulators. Automatica, 49(5):1304–1309. https://doi.org/10.1016/j.automatica.2013.01.047
Mohajerpoor R, Rezaei M, Talebi A, et al., 2011. A robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc Instit Mech Eng Part I J Syst Contr Eng, 226(4):509–522. https://doi.org/10.1177/0959651811424251
Namvar M, Aghili F, 2005. Adaptive force-motion control of coordinated robots interacting with geometrically unknown environments. IEEE Trans Robot, 21(4):678–694. https://doi.org/10.1109/TRO.2004.842346
Panwar V, Kumar N, Sukavanam N, et al., 2012. Adaptive neural controller for cooperative multiple robot manipulator system manipulating a single rigid object. Appl Soft Comput, 12(1):216–227. https://doi.org/10.1016/j.asoc.2011.08.051
Park IW, Lee BJ, Cho SH, et al., 2012. Laser-based kinematic calibration of robot manipulator using differential kinematics. IEEE/ASME Trans Mechatron, 17(6):1059–1067. https://doi.org/10.1109/TMECH.2011.2158234
Park J, Sandberg IW, 1991. Universal approximation using radial-basis-function networks. Neur Comput, 3(2):246–257. https://doi.org/10.1162/neco.1991.3.2.246
Parra-Vega V, Arimoto S, Liu YH, et al., 2003. Dynamic sliding pid control for tracking of robot manipulators: theory and experiments. IEEE Trans Robot Autom, 19(6):967–976. https://doi.org/10.1109/TRA.2003.819600
Su CY, Stepanenko Y, 1995. Adaptive sliding mode coordinated control of multiple robot arms attached to a constrained object. IEEE Trans Syst Man Cybern, 25(5):871–878. https://doi.org/10.1109/21.376500
Szewczyk J, Plumet F, Bidaud P, 2002. Planning and controlling cooperating robots through distributed impedance. J Robot Syst, 19(6):283–297. https://doi.org/10.1002/rob.10041
Tavasoli A, Eghtesad M, Jafarian H, 2009. Two-time scale control and observer design for trajectory tracking of two cooperating robot manipulators moving a flexible beam. Robot Auton Syst, 57(2):212–221. https://doi.org/10.1016/j.robot.2008.04.003
Zhang YH, Wei W, Dan YU, et al., 2011. A tracking and predicting scheme for ping pong robot. J Zhejiang Univ-Sci C (Comput & Electron), 12(2):110–115. https://doi.org/10.1631/jzus.C0910528
Zhao D, Li S, Zhu Q, 2014a. Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics. Int J Syst Sci, 47(4):1–14. https://doi.org/10.1080/00207721.2014.906681
Zhao D, Ni W, Zhu Q, 2014b. A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing, 140:8–18. https://doi.org/10.1016/j.neucom.2014.03.041
Zhao D, Zhu Q, Li N, et al., 2014c. Synchronized control with neuro-agents for leader–follower based multiple robotic manipulators. Neurocomputing, 124:149–161. https://doi.org/10.1016/j.neucom.2013.07.016
Zribi M, Karkoub M, Huang L, 2000. Modelling and control of two robotic manipulators handling a constrained object. Appl Math Model, 24(12):881–898. https://doi.org/10.1016/S0307-904X(00)00022-6
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (No. 51675470), the National Key R&D Program of China (No. 2017YFB1301203), and the Fundamental Research Funds for the Central Universities, China (No. 2017QNA4001)
Rights and permissions
About this article
Cite this article
Xu, F., Wang, J. & Lu, Gd. Adaptive robust neural control of a two-manipulator system holding a rigid object with inaccurate base frame parameters. Frontiers Inf Technol Electronic Eng 19, 1316–1327 (2018). https://doi.org/10.1631/FITEE.1601707
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/FITEE.1601707
Key words
- Cooperative manipulators
- Neural networks
- Inaccurate translational base frame
- Adaptive control
- Robust control