Skip to main content
Log in

An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Due to its simplicity and ease of use, the standard grey wolf optimizer (GWO) is attracting much attention. However, due to its imperfect search structure and possible risk of being trapped in local optima, its application has been limited. To perfect the performance of the algorithm, an optimized GWO is proposed based on a mutation operator and eliminating-reconstructing mechanism (MR-GWO). By analyzing GWO, it is found that it conducts search with only three leading wolves at the core, and balances the exploration and exploitation abilities by adjusting only the parameter a, which means the wolves lose some diversity to some extent. Therefore, a mutation operator is introduced to facilitate better searching wolves, and an eliminating- reconstructing mechanism is used for the poor search wolves, which not only effectively expands the stochastic search, but also accelerates its convergence, and these two operations complement each other well. To verify its validity, MR-GWO is applied to the global optimization experiment of 13 standard continuous functions and a radial basis function (RBF) network approximation experiment. Through a comparison with other algorithms, it is proven that MR-GWO has a strong advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chaman-Motlagh, A., 2015. Superdefect photonic crystal filter optimization using grey wolf optimizer. IEEE Photon. Technol. Lett., 27(22): 2355–2358. https://doi.org/10.1109/LPT.2015.2464332

    Article  Google Scholar 

  • Emary, E., Zawbaa, H.M., 2016. Impact of chaos functions on modern swarm optimizers. PLoS ONE, 11(7): e0158738. https://doi.org/10.1371/journal.pone.0158738

    Article  Google Scholar 

  • Emary, E., Zawbaa, H.M., Hassanien, A.E., 2016. Binary grey wolf optimization approaches for feature selection. Neu-rocomputing, 172: 371–381. https://doi.org/10.1016/j.neucom.2015.06.083

    Google Scholar 

  • Gao, W.F., 2013. Artificial Bee Colony Algorithm and Its Applications. PhD Thesis, Xidian University, Xi’an, China (in Chinese).

    Google Scholar 

  • Gao, W.F., Liu, S.Y., Huang, L.L., 2012. Particle swarm op-timization with chaotic opposition-based population ini-tialization and stochastic search technique. Commun. Nonl. Sci. Numer. Simul., 17(11): 4316–4327. https://doi.org/10.1016/j.cnsns.2012.03.015

    Article  Google Scholar 

  • Hadidian-Moghaddam, M.J., Arabi-Nowdeh, S., Bigdeli, M., 2016. Optimal sizing of a stand-alone hybrid photovol-taic/wind system using new grey wolf optimizer consid-ering reliability. J. Renew. Sustain. Energy, 8: 035903. https://doi.org/10.1063/1.4950945

    Article  Google Scholar 

  • Han, Z.M., Lin, Z.Y., Fu, M.Y., et al., 2015. Distributed co-ordination in multi-agent systems: a graph Laplacian perspective. Front. Inform. Technol. Electron. Eng., 16(6): 429–448. https://doi.org/10.1631/FITEE.1500118

    Article  Google Scholar 

  • Kamboj, V.K., 2016. A novel hybrid PSO-GWO approach for unit commitment problem. Neur. Comput. Appl., 27(6): 1643–1655. https://doi.org/10.1007/s00521-015-1962-4

    Article  Google Scholar 

  • Kamboj, V.K., Bath, S.K., Dhillon, J.S., 2016. Solution of non-convex economic load dispatch problem using grey wolf optimizer. Neur. Comput. Appl., 27(5): 1301–1316. https://doi.org/10.1007/s00521-015-1934-8

    Article  Google Scholar 

  • Karaboga, D., 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report No. TR06, Erciyes University, Kayseri, Turkey.

    Google Scholar 

  • Komaki, G.M., Kayvanfar, V., 2015. Grey wolf optimizer algorithm for the two-stage assembly flow shop sched-uling problem with release time. J. Comput. Sci., 8: 109–120. https://doi.org/10.1016/j.jocs.2015.03.011

    Article  Google Scholar 

  • Korayem, L., Khorsid, M., Kassem, S.S., 2015. Using grey wolf algorithm to solve the capacitated vehicle routing problem. IOP Conf. Ser. Mater. Sci. Eng., 83: 012014. https://doi.org/10.1088/1757-899X/83/1/012014

    Article  Google Scholar 

  • Li, Z.C., Huang, X.L., 2016. Glowworm swarm optimization and its application to blind signal separation. Math. Probl. Eng., 2016: 5481602. https://doi.org/10.1155/2016/5481602

    MathSciNet  Google Scholar 

  • Liu, J.K., 2014. Intelligent Control (3rd Ed.). Publishing House of Electronics Industry, Beijing, China, p.132–140 (in Chinese).

    Google Scholar 

  • Lu, C., Xiao, S.Q., Li, X.Y., et al., 2016. An effective multi- objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Adv. Eng. Softw., 99: 161–176. https://doi.org/10.1016/j.advengsoft.2016.06.004

    Article  Google Scholar 

  • Mahdad, B., Srairi, K., 2015. Blackout risk prevention in a smart grid based flexible optimal strategy using grey wolf-pattern search algorithms. Energy Conv. Manag., 98: 411–429. https://doi.org/10.1016/j.enconman.2015.04.005

    Article  Google Scholar 

  • Medjahed, S.A., Saadi, T.A., Benyettou, A., et al., 2016. Gray wolf optimizer for hyperspectral band selection. Appl. Soft Comput., 40: 178–186. https://doi.org/10.1016/j.asoc.2015.09.045

    Article  Google Scholar 

  • Mirjalili, S., 2015. How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl. Intell., 43(1): 150–161. https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

  • Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf op-timizer. Adv. Eng. Softw., 69: 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  • Mirjalili, S., Saremi, S., Mirjalili, S.M., et al., 2016. Multi- objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl., 47: 106–119. https://doi.org/10.1016/j.eswa.2015.10.039

    Article  Google Scholar 

  • Mohanty, S., Subudhi, B., Ray, P.K., 2016. A new MPPT design using grey wolf optimization technique for pho-tovoltaic system under partial shading conditions. IEEE Trans. Sustain. Energy, 7(1): 181–188. https://doi.org/10.1109/TSTE.2015.2482120

    Article  Google Scholar 

  • Nabil, E., 2016. A modified flower pollination algorithm for global optimization. Expert Syst. Appl., 57: 192–203. https://doi.org/10.1016/j.eswa.2016.03.047

    Article  Google Scholar 

  • Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M., 2010. A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math. Appl., 60(7): 2087–2098. https://doi.org/10.1016/j.camwa.2010.07.049

    Article  Google Scholar 

  • Saremi, S., Mirjalili, S.Z., Mirjalili, S.M., 2015. Evolutionary population dynamics and grey wolf optimizer. Neur. Comput. Appl., 26(5): 1257–1263. https://doi.org/10.1007/s00521-014-1806-7

    Article  Google Scholar 

  • Shakarami, M.R., Davoudkhani, I.F., 2016. Wide-area power system stabilizer design based on grey wolf optimization algorithm considering the time delay. Electr. Power Syst. Res., 133: 149–159. https://doi.org/10.1016/j.epsr.2015.12.019

    Article  Google Scholar 

  • Sharma, Y., Saikia, L.C., 2015. Automatic generation control of a multi-area ST-Thermal power system using grey wolf optimizer algorithm based classical controllers. Int. J. Electr. Power Energy Syst., 73: 853–862. https://doi.org/10.1016/j.ijepes.2015.06.005

    Article  Google Scholar 

  • Storn, R., Price, K., 1997. Differential evolution—a simple and efficient heuristic for global optimization over con-tinuous spaces. J. Glob. Optim., 11(4): 341–359. https://doi.org/10.1023/A:1008202821328

    Article  Google Scholar 

  • Sulaiman, M.H., Mustaffa, Z., Mohamed, M.R., et al., 2015. Using the gray wolf optimizer for solving optimal reac-tive power dispatch problem. Appl. Soft Comput., 32: 286–292. https://doi.org/10.1016/j.asoc.2015.03.041

    Article  Google Scholar 

  • Thamaraiselvi, A., Santhi, R., 2016. A new approach for op-timization of real life transportation problem in neutro-sophic environment. Math. Probl. Eng., 2016: 5950747. https://doi.org/10.1155/2016/5950747

    Article  Google Scholar 

  • Venske, S.M., Gonçalves, R.A., Benelli, E.M., et al., 2016. ADEMO/D: an adaptive differential evolution for protein structure prediction problem. Expert Syst. Appl., 56: 209–226. https://doi.org/10.1016/j.eswa.2016.03.009

    Article  Google Scholar 

  • Wu, T.Q., Yao, M., Yang, J.H., 2016. Dolphin swarm algo-rithm. Front. Inform. Technol. Electron. Eng., 17(8): 717–729. https://doi.org/10.1631/FITEE.1500287

    Article  Google Scholar 

  • Yao, P., Wang, H.L., Ji, H.X., 2016. Multi-UAVs tracking target in urban environment by model predictive control and improved grey wolf optimizer. Aerosp. Sci. Technol., 55: 131–143. https://doi.org/10.1016/j.ast.2016.05.016

    Article  Google Scholar 

  • Zhang, S., Zhou, Y.Q., 2015. Grey wolf optimizer based on Powell local optimization method for clustering analysis. Discr. Dynam. Nat. Soc., 2015: 481360. https://doi.org/10.1155/2015/481360

    Google Scholar 

  • Zhang, S., Zhou, Y.Q., Li, Z.M., et al., 2016. Grey wolf op-timizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw., 99: 121–136. https://doi.org/10.1016/j.advengsoft.2016.05.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qing Zhang.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA7041003), the Scientific Research Plan Projects of Shanxi Education Department (No. 17JK0825), and the Scientific Research Plan Projects of Xianyang Normal University (No. 15XSYK036)

Electronic supplementary material

11714_2017_1172_MOESM1_ESM.pdf

An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xq., Ming, Zf. An optimized grey wolf optimizer based on a mutation operator and eliminating-reconstructing mechanism and its application. Frontiers Inf Technol Electronic Eng 18, 1705–1719 (2017). https://doi.org/10.1631/FITEE.1601555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601555

Key words

CLC number

Navigation