Skip to main content
Log in

Joint throughput and transmission range optimization for triple-hop networks with cognitive relay

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The optimization of the network throughput and transmission range is one of the most important issues in cognitive relay networks (CRNs). Existing research has focused on the dual-hop network, which cannot be extended to a triple-hop network due to its shortcomings, including the limited transmission range and one-way communication. In this paper, a novel, triple-hop relay scheme is proposed to implement time-division duplex (TDD) transmission among secondary users (SUs) in a three-phase transmission. Moreover, a superposition coding (SC) method is adopted for handling two-receiver cases in triple-hop networks with a cognitive relay. We studied a joint optimization of time and power allocation in all three phases, which is formulated as a nonlinear and concave problem. Both analytical and numerical results show that the proposed scheme is able to improve the throughput of SUs, and enlarge the transmission range of primary users (PUs) without increasing the number of hops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Chen, X., Huang, J., 2012. Distributed spectrum access with spatial reuse. IEEE J. Sel. Areas Commun., 31(3):593–603. http://dx.doi.org/10.1109/JSAC.2013.130323

    Article  Google Scholar 

  • Chen, X., Huang, J., 2015. Imitation-based social spectrum sharing. IEEE Trans. Mob. Comput., 14(1):1189–1202. http://dx.doi.org/10.1109/TMC.2014.2347052

    Article  Google Scholar 

  • Elgendi, M., Nasr, O.A., Khairy, M.M., 2014. Cooperative multicasting based on superposition and layered coding. IET Commun., 8(3):267–277. http://dx.doi.org/10.1049/iet-com.2013.0167

    Article  Google Scholar 

  • Guimarães, F.R.V., da Costa, D.B., Tsiftsis, T.A., et al., 2014}. Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Trans. Veh. Technol., 63(1):433–439. http://dx.doi.org/10.1109/TVT.2013.2275201

    Article  Google Scholar 

  • He, J., Xu, C., Li, L., 2012. Power saving for cooperative spectrum sharing-based cognitive radios under primary user short-term rate protection. IET Commun., 6(9):1097–1103. http://dx.doi.org/10.1049/iet-com.2011.0456

    Article  MathSciNet  Google Scholar 

  • Huang, H., Li, Z., Si, J., et al., 2015. Underlay cognitive relay networks with imperfect channel state information and multiple primary receivers. IET Commun., 9(4):460–467. http://dx.doi.org/10.1049/iet-com.2014.0429

    Article  Google Scholar 

  • Jo, M., Maksymyuk, T., Batista, R.L., et al., 2014. A survey of converging solutions for heterogeneous mobile networks. IEEE Wirel. Commun., 21(6):54–62. http://dx.doi.org/10.1109/MWC.2014.7000972

    Article  Google Scholar 

  • Kaneko, M., Hayashi, K., Sakai, H., 2014. Superposition coding based user combining schemes for non-orthogonal scheduling in a wireless relay system. IEEE Trans. Wirel. Commun., 13(6):3232–3243. http://dx.doi.org/10.1109/TWC.2014.042114.130419

    Article  Google Scholar 

  • Lee, J., Wang, H., Andrew, J.G., et al., 2011. Outage probabil-ity of cognitive relay networks with interference con-straints. IEEE Trans. Wirel. Commun., 10(2):390–395. http://dx.doi.org/10.1109/TWC.2010.120310.090852

    Article  Google Scholar 

  • Li, P., de Lamare, R.C., Fa, R., 2011. Multiple feedback suc-cessive interference cancellation detection for multiuser MIMO systems. IEEE Trans. Wirel. Commun., 10(8): 2434–2439. http://dx.doi.org/10.1109/TWC.2011.060811.101962

    Article  Google Scholar 

  • Li, Y., Zhang, Z., Zhang, B., et al., 2013. Best relay selection in decode and forward cooperative cognitive radio relay networks over Rayleigh fading channels. IET Int. Conf. on Information and Communications Technologies, p.152–157. http://dx.doi.org/10.1049/cp.2013.0048

    Google Scholar 

  • Liu, K.R., 2009. Cooperative Communications and Network-ing: Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Liu, X., Tan, X.Z., 2014. Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. Int. J. Commun. Syst., 27(5):705–720. http://dx.doi.org/10.1002/dac.2377

    Article  Google Scholar 

  • Lu, W., Wang, J., 2014. Opportunistic spectrum sharing based on full-duplex cooperative OFDM relaying. IEEE Com-mun. Lett., 18(2):241–244. http://dx.doi.org/10.1109/lcomm.2013.122713.132038

    Article  Google Scholar 

  • Lu, W., Wang, J., Li, F., et al., 2013. An anti-interference cooperative spectrum sharing strategy with full-duplex. 19th IEEE Int. Conf. on Networks, p.1–4. http://dx.doi.org/10.1109/ICON.2013.6781939

    Google Scholar 

  • Luo, Z.Q., Yu, W., 2006. An introduction to convex optimiza-tion for communications and signal processing. IEEE J. Sel. Areas Commun., 24(8):1426–1438. http://dx.doi.org/10.1109/JSAC.2006.879347

    Article  Google Scholar 

  • Shin, E.H., Kim, D., 2011. Time and power allocation for collaborative primary-secondary transmission using su-perposition coding. IEEE Commun. Lett., 15(2):196–198. http://dx.doi.org/10.1109/LCOMM.2011.122810.101486

    Article  Google Scholar 

  • Shoukry, H., Zlatanov, N., Jamali, V., et al., 2014. Achievable rates for the fading three-hop half-duplex relay network using buffer-aided relaying. IEEE Global Communica-tions Conf., p.1716–1721. http://dx.doi.org/10.1109/GLOCOM.2014.7037056

    Google Scholar 

  • Spectrum Efficiency Working Group, 2002. Report of the Spectrum Efficiency Working Group. Federal Commu-nications Commission Spectrum Policy Task Force, Washington DC,USA.

    Google Scholar 

  • Vanka, S., Srinivasa, S., Haenggi, M., et al., 2012a. A practical approach to strengthen vulnerable downlinks using su-perposition coding. IEEE Int. Conf. on Communications, p.3763–3768. http://dx.doi.org/10.1109/ICC.2012.6364619

    Google Scholar 

  • Vanka, S., Srinivasa, S., Gong, P., et al., 2012b. Superposition coding strategies: Design and experimental evaluation. IEEE Trans. Wirel. Commun., 11(7):2628–2639. http://dx.doi.org/10.1109/TWC.2012.051512.111622

    Article  Google Scholar 

  • Wang, J., Li, Y., Zhong, B., et al., 2013. Adaptive power allo-cation for decode-and-forward OFDM transmission with multi-hop relaying. IEEE/CIC Int. Conf. on Communi-cations in China, p.345–350. http://dx.doi.org/10.1109/ICCChina.2013.6671140

    Google Scholar 

  • Zhang, Y., Sun, X., Wang, B., 2016. Efficient algorithm for k-barrier coverage based on integer linear programming. China Commun., 13(7):16–23. http://dx.doi.org/10.1109/CC.2016.7559071

    Article  Google Scholar 

  • Zhong, W., Chen, G., Jin, S., et al., 2014. Relay selection and discrete power control for cognitive relay networks via potential game. IEEE Trans. Signal Process., 62(20): 5411–5424. http://dx.doi.org/10.1109/TSP.2014.2347261

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Zhao or Wan-liang Wang.

Additional information

Project supported by the Zhejiang Provincial National Natural Sci-ence Foundation (No. LQ14F020005), the National Natural Science Foundation of China (Nos. 61379123 and 61402414), and the Re-search Program of the Educational Commission of Zhejiang Province, China (No. Y201431815)

ORCID: Wan-liang WANG, http://orcid.org/0000-0001-6127-4222

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Wang, Wl., Yao, Xw. et al. Joint throughput and transmission range optimization for triple-hop networks with cognitive relay. Frontiers Inf Technol Electronic Eng 18, 253–261 (2017). https://doi.org/10.1631/FITEE.1601414

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601414

Keywords

CLC number

Navigation