On modeling of electrical cyber-physical systems considering cyber security

  • Yi-nan Wang
  • Zhi-yun Lin
  • Xiao Liang
  • Wen-yuan Xu
  • Qiang Yang
  • Gang-feng Yan
Article

Abstract

This paper establishes a new framework for modeling electrical cyber-physical systems (ECPSs), integrating both power grids and communication networks. To model the communication network associated with a power transmission grid, we use a mesh network that considers the features of power transmission grids such as high-voltage levels, long-transmission distances, and equal importance of each node. Moreover, bidirectional links including data uploading channels and command downloading channels are assumed to connect every node in the communication network and a corresponding physical node in the transmission grid. Based on this model, the fragility of an ECPS is analyzed under various cyber attacks including denial-of-service (DoS) attacks, replay attacks, and false data injection attacks. Control strategies such as load shedding and relay protection are also verified using this model against these attacks.

Keywords

Cyber-physical systems Cyber attacks Cascading failure analysis Smart grid 

CLC number

TM711 TP11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldick, R., Chowdhury, B., Dobson, I., et al., 2008. Initial review of methods for cascading failure analysis in electric power transmission systems. Proc. IEEE Power and Energy Society General Meeting, p.1–8. http://dx.doi.org/10.1109/PES.2008.4596430Google Scholar
  2. Bao, Z.J., Cao, Y.J., Wang, G.Z., et al., 2009. Analysis of cascading failure in electric grid based on power flow entropy. Phys. Lett. A, 373(34):3032–3040. http://dx.doi.org/10.1016/j.physleta.2009.06.058CrossRefGoogle Scholar
  3. Bishop, M., 2002. Computer Security: Art and Science. Addison-Wesley Prefessional, USA.Google Scholar
  4. Buldyrev, S.V., Parshani, R., Paul, G., et al., 2010. Catastrophic cascade of failures in interdependent networks. Nature, 464:1025–1028. http://dx.doi.org/10.1038/nature08932CrossRefGoogle Scholar
  5. Buldyrev, S.V., Shere, N.W., Cwilich, G.A., 2011. Interdependent networks with identical degrees of mutually dependent nodes. Phys. Rev. E, 83:016112. http://dx.doi.org/10.1103/PhysRevE.83.016112MathSciNetCrossRefGoogle Scholar
  6. Chakrabarti, A., Manimaran, G., 2002. Internet infrastructure security: a taxonomy. IEEE Netw., 16(6):13–21. http://dx.doi.org/10.1109/MNET.2002.1081761CrossRefGoogle Scholar
  7. Chen, P.Y., Cheng, S.M., Chen, K.C., 2012. Smart attacks in smart grid communication networks. IEEE Commun. Mag., 50(8):24–29. http://dx.doi.org/10.1109/MCOM.2012.6257523CrossRefGoogle Scholar
  8. Dobson, I., Carreras, B.A., Lynch, V.E., et al., 2001. An initial model for complex dynamics in electric power system blackouts. Proc. Hawaii Int. Conf. on System Sciences, p.1–9.Google Scholar
  9. Gungor, V.C., Sahin, D., Kocak, T., et al., 2011. Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inform., 7(4):529–539. http://dx.doi.org/10.1109/TII.2011.2166794CrossRefGoogle Scholar
  10. Hu, Y., Ksherim, B., Cohen, R., et al., 2011. Percolation in interdependent and interconnected networks: abrupt change from second- to first-order transitions. Phys. Rev. E, 84:066116. http://dx.doi.org/10.1103/PhysRevE.84.066116CrossRefGoogle Scholar
  11. Huang, T.E., Sun, H.B., Guo, Q.L., et al., 2015. Knowledge management and security early warning based on big simulation data in power grid operation. Power Syst. Technol., 39(11):3080–3087 (in Chinese).Google Scholar
  12. Huang, X., Gao, J., Buldyrev, S.V., et al., 2011. Robustness of interdependent networks under targeted attack. Phys. Rev. E, 83:065101. http://dx.doi.org/10.1103/PhysRevE.83.065101CrossRefGoogle Scholar
  13. Koç, Y., Warnier, M., Mieghem, P.V., et al., 2014. The impact of the topology on cascading failures in a power grid model. Phys. A, 402:169–179. http://dx.doi.org/10.1016/j.physa.2014.01.056MathSciNetCrossRefGoogle Scholar
  14. Liu, Y., Ning, P., Reiter, M.K., 2011. False data injection attacks against state estimation in electric power grids. ACM Trans. Inform. Syst. Secur., 14(1):13.1-13.33. http://dx.doi.org/10.1145/1952982.1952995CrossRefGoogle Scholar
  15. Morris, R.G., Barthelemy, M., 2013. Interdependent networks: the fragility of control. Sci. Reports, 3:2764.1-2764.5. http://dx.doi.org/10.1038/srep02764Google Scholar
  16. Parandehgheibi, M., Modiano, E., Hay, D., 2014. Mitigating cascading failures in interdependent power grids and communication networks. Proc. IEEE Int. Conf. on Smart Grid Communications, p.242–247. http://dx.doi.org/10.1109/SmartGridComm.2014. 7007653Google Scholar
  17. Parshani, R., Buldyrev, S.V., Havlin, S., 2010. Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett., 105:048701. http://dx.doi.org/10.1103/PhysRevLett.105.048701CrossRefGoogle Scholar
  18. Pasqualetti, F., Dörfler, F., Bullo, F., 2013. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Contr., 58(11):2715–2729. http://dx.doi.org/10.1109/TAC.2013.2266831MathSciNetCrossRefGoogle Scholar
  19. Schneider, C.M., Yazdani, N., Araújo, N.A.M., et al., 2013. Towards designing robust coupled networks. Sci. Reports, 3:1969.1-1969.7. http://dx.doi.org/10.1038/srep01969Google Scholar
  20. Shao, J., Buldyrev, S.V., Havlin, S., et al., 2011. Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E, 83:036116. http://dx.doi.org/10.1103/PhysRevE.83.036116MathSciNetCrossRefGoogle Scholar
  21. Shin, D.H., Qian, D., Zhang, J., 2014. Cascading effects in interdependent networks. IEEE Netw., 28(4):82–87. http://dx.doi.org/10.1109/MNET.2014.6863136CrossRefGoogle Scholar
  22. Stott, B., Jardim, J., Alsac, O., 2009. DC power flow revisited. IEEE Trans. Power Syst., 24(3):1290–1300. http://dx.doi.org/10.1109/TPWRS.2009.2021235CrossRefGoogle Scholar
  23. Teixeira, A., Shames, I., Sandberg, H., et al., 2015a. A secure control framework for resource-limited adversaries. Automatica, 51:135–148. http://dx.doi.org/10.1016/j.automatica.2014.10.067MathSciNetCrossRefMATHGoogle Scholar
  24. Teixeira, A., Sou, K.C., Sandberg, H., et al., 2015b. Secure control systems: a quantitative risk management approach. IEEE Contr. Syst., 35(1):24–45. http://dx.doi.org/10.1109/MCS.2014.2364709MathSciNetCrossRefGoogle Scholar
  25. Wang, S.Z., 2012. Power System Control and Dispatching Automation (2nd Ed.). China Electric Power Press, China (in Chinese).Google Scholar
  26. Wei, J., Kundur, D., Zourntos, T., et al., 2014. A flockingbased paradigm for hierarchical cyber-physical smart grid modeling and control. IEEE Trans. Smart Grid, 5(6):2687–2700. http://dx.doi.org/10.1109/TSG.2014.2341211CrossRefGoogle Scholar
  27. Yang, Q., Barria, J.A., Green, T.C., 2011. Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inform., 7(2):316–327. http://dx.doi.org/10.1109/TII.2011.2123903CrossRefGoogle Scholar
  28. Zhao, F., Sun, H.B., Huang, T.E., et al., 2015. Design and engineering application of automatic discovery system for critical flowgates and security operation rules in power grids. Autom. Elect. Power Syst., 39(1):117–123 (in Chinese).Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yi-nan Wang
    • 1
  • Zhi-yun Lin
    • 1
  • Xiao Liang
    • 2
  • Wen-yuan Xu
    • 1
  • Qiang Yang
    • 1
  • Gang-feng Yan
    • 1
  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouChina
  2. 2.Smart Grid Research Institute, State GridBeijingChina

Personalised recommendations