Advertisement

A K self-adaptive SDN controller placement for wide area networks

  • Peng Xiao
  • Zhi-yang Li
  • Song Guo
  • Heng Qi
  • Wen-yu Qu
  • Hai-sheng Yu
Article

Abstract

As a novel architecture, software-defined networking (SDN) is viewed as the key technology of future networking. The core idea of SDN is to decouple the control plane and the data plane, enabling centralized, flexible, and programmable network control. Although local area networks like data center networks have benefited from SDN, it is still a problem to deploy SDN in wide area networks (WANs) or large-scale networks. Existing works show that multiple controllers are required in WANs with each covering one small SDN domain. However, the problems of SDN domain partition and controller placement should be further addressed. Therefore, we propose the spectral clustering based partition and placement algorithms, by which we can partition a large network into several small SDN domains efficiently and effectively. In our algorithms, the matrix perturbation theory and eigengap are used to discover the stability of SDN domains and decide the optimal number of SDN domains automatically. To evaluate our algorithms, we develop a new experimental framework with the Internet2 topology and other available WAN topologies. The results show the effectiveness of our algorithm for the SDN domain partition and controller placement problems.

Keywords

Software-defined networking (SDN) Controller placement K self-adaptive method 

CLC number

TP393 

References

  1. Bach, F.R., Jordan, M.I., 2003. Learning Spectral Clustering. Technical Report, No. UCB/CSD-03-1249. University of California at Berkeley, USA.Google Scholar
  2. Cai, Z., Cox, A.L., Ng, T.S.E., 2010. Maestro: a system for scalable OpenFlow control. Technical Report, TR10-08. Rice University, USA.Google Scholar
  3. Dixit, A., Hao, F., Mukherjee, S., et al., 2013. Towards an elastic distributed SDN controller. ACM SIGCOMM Comput. Commun. Rev., 43(4): 7–12. http://dx.doi.org/10.1145/2491185.2491193CrossRefGoogle Scholar
  4. Erickson, D., 2013. The beacon OpenFlow controller. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.13–18. http://dx.doi.org/10.1145/2491185.2491189CrossRefGoogle Scholar
  5. Gude, N., Koponen, T., Pettit, J., et al., 2008. NOX: towards an operating system for networks. ACM SIGCOMM Comput. Commun. Rev., 38(3): 105–110. http://dx.doi.org/10.1145/1384609.1384625CrossRefGoogle Scholar
  6. Heller, B., Sherwood, R., McKeown, N., 2012. The controller placement problem. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.7–12. http://dx.doi.org/10.1145/2342441.2342444CrossRefGoogle Scholar
  7. Hock, D., Hartmann, M., Gebert, S., et al., 2013. Paretooptimal resilient controller placement in SDN-based core networks. Proc. 25th Int. Teletraffic Congress, p.1–9. http://dx.doi.org/10.1109/ITC.2013.6662939Google Scholar
  8. Kirkpatrick, K., 2013. Software-defined networking. Commun. ACM, 56(9): 16–19. http://dx.doi.org/10.1145/2500468.2500473CrossRefGoogle Scholar
  9. Knight, S., Nguyen, H.X., Falkner, N., et al., 2011. The Internet topology zoo. IEEE J. Sel. Areas Commun., 29(9): 1765–1775. http://dx.doi.org/10.1109/JSAC.2011.111002CrossRefGoogle Scholar
  10. Koponen, T., Casado, M., Gude, N., et al., 2010). Onix: a distributed control platform for large-scale production networks. Proc. OSDI, p.1–14.Google Scholar
  11. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., et al., 2015. Software-defined networking: a comprehensive survey. Proc. IEEE, 103(1): 14–76. http://dx.doi.org/10.1109/JPROC.2014.2371999CrossRefGoogle Scholar
  12. Lin, P., Bi, J., Wang, Y., 2013. East-west bridge for SDN network peering. Proc. 2nd CCF Int. Conf. of China, p.170–181. http://dx.doi.org/10.1007/978-3-642-53959-6_16Google Scholar
  13. Liu, N., Lu, Y., Tang, X.J., et al., 2014. Study on automatically determining the optimal number of clusters present in spectral co-clustering documents and words. J. Chin. Comput. Syst., 35(3): 610–614 (in Chinese).Google Scholar
  14. Mall, R., Langone, R., Suykens, J.A.K., 2013. Self-tuned kernel spectral clustering for large scale networks. Proc. IEEE Int. Conf. on Big Data, p.385–393. http://dx.doi.org/10.1109/BigData.2013.6691599Google Scholar
  15. McKeown, N., Anderson, T., Balakrishnan, H., et al., 2008. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev., 38(2): 69–74. http://dx.doi.org/10.1145/1355734.1355746CrossRefGoogle Scholar
  16. Ng, A.Y., Jordan, M.I., Weiss, Y., 2001. On spectral clustering: analysis and an algorithm. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (Eds.). Advances in Neural Information Processing Systems 14, p.849–856.Google Scholar
  17. Phemius, K., Bouet, M., Leguay, J., 2014. DISCO: distributed multi-domain SDN controllers. Proc. IEEE Network Operations and Management Symp., p.1–4. http://dx.doi.org/10.1109/NOMS.2014.6838330Google Scholar
  18. Rebagliati, N., Verri, A., 2011. Spectral clustering with more than K eigenvectors. Neurocomputing, 74(9): 1391–1401. http://dx.doi.org/10.1016/j.neucom.2010.12.008CrossRefGoogle Scholar
  19. Shah, S.A., Faiz, J., Farooq, M., et al., 2013. An architectural evaluation of SDN controllers. Proc. IEEE Int. Conf. on Communications, p.3504–3508. http://dx.doi.org/10.1109/ICC.2013.6655093Google Scholar
  20. Shalimov, A., Zuikov, D., Zimarina, D., et al., 2013. Advanced study of SDN/OpenFlow controllers. Proc. 9th Central & Eastern European Software Engineering Conf. in Russia, Article 1. http://dx.doi.org/10.1145/2556610.2556621Google Scholar
  21. Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 22(8): 888–905. http://dx.doi.org/10.1109/34.868688CrossRefGoogle Scholar
  22. Tam, A.S.W., Xi, K., Chao, H.J., 2011. Use of devolved controllers in data center networks. Proc. IEEE Conf. on Computer Communications Workshops, p.596–601. http://dx.doi.org/10.1109/INFCOMW.2011.5928883Google Scholar
  23. Tian, Z., Li, X., Ju, Y., 2007. Spectral clustering based on matrix perturbation theory. Sci. China Ser. F, 50(1): 63–81. http://dx.doi.org/10.1007/s11432-007-0007-8MathSciNetCrossRefGoogle Scholar
  24. Tootoonchian, A., Ganjali, Y., 2010. HyperFlow: a distributed control plane for OpenFlow. Proc. Int. Network Management Conf. on Research on Enterprise Networking, p.1–6.Google Scholar
  25. Tootoonchian, A., Gorbunov, S., Ganjali, Y., et al., 2012. On controller performance in software-defined networks. Proc. 2nd USENIX Conf. on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, p.1–6.Google Scholar
  26. von Luxburg, U., 2007. A tutorial on spectral clustering. Stat. Comput., 17(4): 395–416. http://dx.doi.org/10.1007/s11222-007-9033-zMathSciNetCrossRefGoogle Scholar
  27. Wang, L., Bo, L.F., Jiao, L.C., 2007. Density-sensitive spectral clustering. Acta Electron. Sin., 35(8): 1577–1581 (in Chinese).Google Scholar
  28. Wauthier, F.L., Jojic, N., Jordan, M.I., 2012. Active spectral clustering via iterative uncertainty reduction. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1339–1347. http://dx.doi.org/10.1145/2339530.2339737Google Scholar
  29. Xiao, P., Qu, W., Li, Z., 2014. The SDN controller placement problem for WAN. Proc. IEEE/CIC Int. Conf. on Communications in China, p.220–224. http://dx.doi.org/10.1109/ICCChina.2014.7008275Google Scholar
  30. Xie, H., Tsou, T., Lopez, D., et al., 2012. Software-Defined Networking Efforts Debuted at IETF 84. Available from http://www.internetsociety.org/articles/softwaredefined-networking-efforts-debuted-ietf-84.Google Scholar
  31. Yin, H., Xie, H., Tsou, T., et al., 2012. SDNi: a Message Exchange Protocol for Software Defined Networks (SDNS) across Multiple Domains. Available from https://tools.ietf.org/html/draft-yin-sdn-sdni-00.Google Scholar
  32. Yu, M., Rexford, J., Freedman, M.J., et al., 2010. Scalable flow-based networking with DIFANE. ACM SIGCOMM Comput. Commun. Rev., 40(4): 351–362. http://dx.doi.org/10.1145/1851275.1851224CrossRefGoogle Scholar
  33. Zelnik-Manor, L., Perona, P., 2004. Self-tuning spectral clustering. In: Saul, L.K., Weiss, Y., Bottou, L. (Eds.), Advances in Neural Information Processing Systems 17, p.1601–1608.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peng Xiao
    • 1
    • 2
  • Zhi-yang Li
    • 1
  • Song Guo
    • 3
  • Heng Qi
    • 4
  • Wen-yu Qu
    • 5
    • 1
  • Hai-sheng Yu
    • 4
  1. 1.School of Information Science and TechnologyDalian Maritime UniversityDalianChina
  2. 2.School of Information Science and EngineeringDalian Polytechnic UniversityDalianChina
  3. 3.School of Computer Science and EngineeringThe University of AizuAizuwakamatsuJapan
  4. 4.School of Computer Science and TechnologyDalian University of TechnologyDalianChina
  5. 5.School of Computer SoftwareTianjin UniversityTianjinChina

Personalised recommendations