Using emotions for the development of human-agent societies

  • J. A. Rincon
  • J. Bajo
  • A. Fernandez
  • V. Julian
  • C. Carrascosa
Article

Abstract

Human-agent societies refer to applications where virtual agents and humans coexist and interact transparently into a fully integrated environment. One of the most important aspects in this kind of applications is including emotional states of the agents (humans or not) in the decision-making process. In this sense, this paper presents the applicability of the JaCalIVE (Jason Cartago implemented intelligent virtual environment) framework for developing this kind of society. Specifically, the paper presents an ambient intelligence application where humans are immersed into a system that extracts and analyzes the emotional state of a human group. A social emotional model is employed to try to maximize the welfare of those humans by playing the most appropriate music in every moment.

Keywords

Multi-agent systems Virtual environments Emotional agents 

CLC number

TP13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, F., Amin, M., 2014. The influence of physical environment on emotions, customer satisfaction and behavioural intentions in Chinese resort hotel industry. J. Glob. Bus. Adv., 7(3):249–266. http://dx.doi.org/10.1504/JGBA.2014.064109CrossRefGoogle Scholar
  2. Bales, R.F., 2001. Social Interaction Systems: Theory and Measurement. Transaction Publishers, USA.Google Scholar
  3. Barella, A., Ricci, A., Boissier, O., et al., 2012. MAM5: multi-agent model for intelligent virtual environments. Proc. 10th European Workshop on Multi-Agent Systems, p.16–30.Google Scholar
  4. Billhardt, H., Julian, V., Corchado, J.M., et al., 2014. An architecture proposal for human-agent societies. Proc. Int. Workshop on Highlights of Practical Applications of Heterogeneous Multi-Agent Systems, p.344–357. http://dx.doi.org/10.1007/978-3-319-07767-3_31CrossRefGoogle Scholar
  5. Ducatel, K., Bogdanowicz, M., Scapolo, F., et al., 2001. Scenarios for Ambient Intelligence in 2010. Office for Official Publications of the European Communities.Google Scholar
  6. Fernandez, A., Ossowski, S., 2011. A multiagent approach to the dynamic enactment of semantic transportation services. IEEE Trans. Intell. Transp. Syst., 12(2):333–342. http://dx.doi.org/10.1109/TITS.2011.2106776CrossRefGoogle Scholar
  7. Hale, K.S., Stanney, K.M., 2002. Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, USA.Google Scholar
  8. Han, D.M., Lim, J.H., 2010. Smart home energy management system using IEEE 802.15.4 and ZigBee. IEEE Trans. Consum. Electron., 56(3):1403–1410. http://dx.doi.org/10.1109/TCE.2010.5606276CrossRefGoogle Scholar
  9. Hendler, J., 2007. Where are all the intelligent agents? IEEE Intell. Syst., 22:2–3.Google Scholar
  10. Holzapfel, A., Stylianou, Y., 2007. A statistical approach to musical genre classification using non-negative matrix factorization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.693–696. http://dx.doi.org/10.1109/ICASSP.2007.366330Google Scholar
  11. Huhns, M.N., Singh, M.P., Burstein, M., et al., 2005. Research directions for service-oriented multiagent systems. IEEE Internet Comput., 9(6):65.CrossRefGoogle Scholar
  12. Intille, S.S., 2002. Designing a home of the future. IEEE Perva. Comput., 1(2):76–82.CrossRefGoogle Scholar
  13. Lawrence, S., Giles, C.L., Tsoi, A.C., et al., 1997. Face recognition: a convolutional neural-network approach. IEEE Trans. Neur. Netw., 8(1):98–113. http://dx.doi.org/10.1109/72.554195CrossRefGoogle Scholar
  14. Li, T., Ogihara, M., Li, Q., 2003. A comparative study on content-based music genre classification. Proc. 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, p.282–289. http://dx.doi.org/10.1145/860435.860487Google Scholar
  15. Mangina, E., Carbo, J., Molina, J.M., 2009. Agent-Based Ubiquitous Computing. Atlantis Press, France. http://dx.doi.org/10.2991/978-94-91216-31-2Google Scholar
  16. Mehrabian, A., 1980. Basic Dimensions for a General Psychological Theory: Implications for Personality, Social, Environmental, and Developmental Studies. Oelgeschlager, Gunn & Hain, USA.Google Scholar
  17. Mehrabian, A., 1997. Analysis of affiliation-related traits in terms of the PAD temperament model. J. Psychol., 131(1):101–117. http://dx.doi.org/10.1080/00223989709603508CrossRefGoogle Scholar
  18. Nanty, A., Gelin, R., 2013. Fuzzy controlled PAD emotional state of a NAO robot. Proc. Conf. on Technologies and Applications of Artificial Intelligence, p.90–96. http://dx.doi.org/10.1109/TAAI.2013.30Google Scholar
  19. Ortony, A., 1990. The Cognitive Structure of Emotions. Cambridge University Press, USA.Google Scholar
  20. Ossowski, S., 2013. Agreement Technologies: 8 (Law, Governance and Technology Series). Springer, the Netherlands. http://dx.doi.org/10.1007/978-94-007-5583-3CrossRefGoogle Scholar
  21. Osuna, E., Freund, R., Girosit, F., 1997. Training support vector machines: an application to face detection. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.130–136. http://dx.doi.org/10.1109/CVPR.1997.609310Google Scholar
  22. Rincon, J.A., Garcia, E., Julian, V., et al., 2014. Developing adaptive agents situated in intelligent virtual environments. Proc. 9th Int. Conf. on Hybrid Artificial Intelligence Systems, p.98–109. http://dx.doi.org/10.1007/978-3-319-07617-1_9CrossRefGoogle Scholar
  23. Rincon, J.A., Julian, V., Carrascosa, C., 2015a. Applying a social emotional model in human-agent societies. Proc. Int. Workshops of Practical Applications of Agents, Multi-Agent Systems, p.377–388. http://dx.doi.org/10.1007/978-3-319-19033-4_33Google Scholar
  24. Rincon, J.A., Julian, V., Carrascosa, C., 2015b. Social emotional model. Proc. 13th Int. Conf. on Practical Applications of Agents, Multi-Agent Systems, p.199–210. http://dx.doi.org/10.1007/978-3-319-18944-4_17Google Scholar
  25. Satyanarayanan, M., 2001. Pervasive computing: vision and challenges. IEEE Pers. Commun., 8(4):10–17. http://dx.doi.org/10.1109/98.943998CrossRefGoogle Scholar
  26. Satyanarayanan, M., 2002. A catalyst for mobile and ubiquitous computing. IEEE Perva. Comput., 1(1):2–5. http://dx.doi.org/10.1109/MPRV.2002.993138CrossRefGoogle Scholar
  27. Talupur, M., Nath, S., Yan, H., 2001. Classification of Music Genre. Project Report for 15781.Google Scholar
  28. Viola, P., Jones, M.J., 2004. Robust real-time face detection. Int. J. Comput. Vis., 57(2):137–154. http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fbCrossRefGoogle Scholar
  29. Weiser, M., 1991. The computer for the 21st century. Sci. Am., 265(3):94–104. http://dx.doi.org/10.1038/scientificamerican0991-94CrossRefGoogle Scholar
  30. Zambonelli, F., Jennings, N.R., Wooldridge, M., 2003. Developing multiagent systems: the Gaia methodology. ACM Trans. Softw. Eng. Meth., 12(3):317–370. http://dx.doi.org/10.1145/958961.958963CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. A. Rincon
    • 1
  • J. Bajo
    • 2
  • A. Fernandez
    • 3
  • V. Julian
    • 1
  • C. Carrascosa
    • 1
  1. 1.Department of Computer Systems and ComputationUniversitat Politecnica de ValenciaValenciaSpain
  2. 2.Departamento de Inteligencia ArtificialUniversidad Politecnica de MadridMadridSpain
  3. 3.Centre for Intelligent Information TechnologiesUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations