Enhancing the performance of futurewireless networks with software-defined networking

Review

Abstract

To provide ubiquitous Internet access under the explosive increase of applications and data traffic, the current network architecture has become highly heterogeneous and complex, making network management a challenging task. To this end, software-defined networking (SDN) has been proposed as a promising solution. In the SDN architecture, the control plane and the data plane are decoupled, and the network infrastructures are abstracted and managed by a centralized controller. With SDN, efficient and flexible network control can be achieved, which potentially enhances network performance. To harvest the benefits of SDN in wireless networks, the software-defined wireless network (SDWN) architecture has been recently considered. In this paper, we first analyze the applications of SDN to different types of wireless networks. We then discuss several important technical aspects of performance enhancement in SDN-based wireless networks. Finally, we present possible future research directions of SDWN.

Keywords

Software-defined networking (SDN) Software-defined wireless networks (SDWN) OpenFlow Performance enhancement 

CLC number

TP393 

References

  1. Abbasia, A.A., Younis, M., 2007. A survey on clustering algorithms for wireless sensor networks. Comput. Commun., 30(14-15): 2826–2841. http://dx.doi.org/10.1016/j.comcom.2007.05.024CrossRefGoogle Scholar
  2. Akkaya, K., Younis, M., 2005. A survey on routing protocols for wireless sensor networks. Ad Hoc Netw., 3(3): 325–349. http://dx.doi.org/10.1016/j.adhoc.2003.09.010CrossRefGoogle Scholar
  3. Akyildiz, I.F., Wang, X., 2005. A survey on wireless mesh networks. IEEE Commun. Mag., 43(9):S23–S30. http://dx.doi.org/10.1109/MCOM.2005.1509968CrossRefGoogle Scholar
  4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al., 2002. Wireless sensor networks: a survey. Comput. Netw., 38(4): 393–422. http://dx.doi.org/10.1016/S1389-1286(01)00302-4CrossRefGoogle Scholar
  5. Ali-Ahmad, H., Cicconetti, C., de la Oliva, A., et al., 2013. CROWD: an SDN approach for DenseNets. Proc. 2nd European Workshop on Software Defined Networks, p.25–31. http://dx.doi.org/10.1109/EWSDN.2013.11Google Scholar
  6. Al-Karaki, J.N., Kamal, A.E., 2004. Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun., 11(6): 6–28. http://dx.doi.org/10.1109/MWC.2004.1368893CrossRefGoogle Scholar
  7. Andrews, J.G., Buzzi, S., Choi, W., et al., 2014. What will 5G be? IEEE J. Sel. Areas Commun., 32(6): 1065–1082. http://dx.doi.org/10.1109/JSAC.2014.2328098CrossRefGoogle Scholar
  8. Arslan, M.Y., Sundaresan, K., Rangarajan, S., 2015. Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun. Mag., 53(1): 150–156. http://dx.doi.org/10.1109/MCOM.2015.7010528CrossRefGoogle Scholar
  9. Arslan, Z., Erel, M., Özcevik, Y., et al., 2014. SDoff: a software-defined offloading controller for heterogeneous networks. Proc. IEEE Wireless Communications and Networking Conf., p.2827–2832. http://dx.doi.org/10.1109/WCNC.2014.6952897Google Scholar
  10. Bansal, M., Mehlman, J., Katti, S., et al., 2012. Open-Radio: a programmable wireless dataplane. Proc. 1st Workshop on Hot Topics in Software Defined Networks, p.109–114. http://dx.doi.org/10.1145/2342441.2342464CrossRefGoogle Scholar
  11. Bernardos, C.J., de la Oliva, A., Serrano, P., et al., 2014. An architecture for software defined wireless networking. IEEE Wirel. Commun., 21(3): 52–61. http://dx.doi.org/10.1109/MWC.2014.6845049CrossRefGoogle Scholar
  12. Cai, Y., Yu, F.R., Liang, C., 2014. Resource sharing for software defined D2D communications in virtual wireless networks with imperfect NSI. Proc. IEEE Global Communications Conf., p.4448–4453. http://dx.doi.org/10.1109/GLOCOM.2014.7037508Google Scholar
  13. Cao, Y., Jiang, T., Wang, C., 2015. Cooperative deviceto-device communications in cellular networks. IEEE Wirel. Commun., 22(3): 124–129. http://dx.doi.org/10.1109/MWC.2015.7143335CrossRefGoogle Scholar
  14. Chandrasekhar, V., Andrews, J.G., 2009. Spectrum allocation in tiered cellular networks. IEEE Trans. Commun., 57(10): 3059–3068. http://dx.doi.org/10.1109/TCOMM.2009.10.080529CrossRefGoogle Scholar
  15. Chandrasekhar, V., Andrews, J.G., Muharemovic, T., et al., 2009. Power control in two-tier femtocell networks. IEEE Trans. Wirel. Commun., 8(8): 4316–4328. http://dx.doi.org/10.1109/TWC.2009.081386CrossRefGoogle Scholar
  16. Cheung, W.C., Quek, T.Q.S., Kountouris, M., 2012. Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun., 30(3): 561–574. http://dx.doi.org/10.1109/JSAC.2012.120406CrossRefGoogle Scholar
  17. Dely, P., Kassler, A., Bayer, N., 2011. OpenFlow for wireless mesh networks. Proc. 20th Int. Conf. on Computer Communications and Networks, p.1–6. http://dx.doi.org/10.1109/ICCCN.2011.6006100Google Scholar
  18. Demirkol, I., Ersoy, C., Alagöz, F., 2006. MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag., 44(4): 115–121.CrossRefGoogle Scholar
  19. Doppler, K., Rinne, M., Wijting, C., et al., 2009. Device-todevice communication as an underlay to LTE-advanced networks. IEEE Commun. Mag., 47(12): 42–49. http://dx.doi.org/10.1109/MCOM.2009.5350367CrossRefGoogle Scholar
  20. Feng, M., Mao, S., 2016). Harvest the potential of massive MIMO with multi-layer techniques. IEEE Netw., in press.MathSciNetCrossRefGoogle Scholar
  21. Feng, M., Chen, D., Wang, Z., et al., 2012a). An improved spectrum management scheme for OFDMA femtocell networks. Proc. 1st IEEE Int. Conf. on Communications in China, p.132–136. http://dx.doi.org/10.1109/ICCChina.2012.6356866Google Scholar
  22. Feng, M., Chen, D., Wang, Z., et al., 2012b). Throughput improvement for OFDMA femtocell networks through spectrum allocation and access control strategy. Proc. Computing, Communications and Applications Conf., p.387–391. http://dx.doi.org/10.1109/ComComAp.2012.6154878Google Scholar
  23. Feng, M., Jiang, T., Chen, D., et al., 2014. Cooperative small cell networks: high capacity for hotspots with interference mitigation. IEEE Wirel. Commun., 21(6): 108–116. http://dx.doi.org/10.1109/MWC.2014.7000978CrossRefGoogle Scholar
  24. Feng, M., Mao, S., Jiang, T., 2015a). Duplex mode selection and channel allocation for full-duplex cognitive femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.1900–1905. http://dx.doi.org/10.1109/WCNC.2015.7127758Google Scholar
  25. Feng, M., Mao, S., Jiang, T., 2015b. Joint duplex mode selection, channel allocation, and power control for fullduplex cognitive femtocell networks. Dig. Commun. Netw., 1(1): 30–44. http://dx.doi.org/10.1016/j.dcan.2015.01.002CrossRefGoogle Scholar
  26. Feng, M., Mao, S., Jiang, T., 2016. BOOST: base station on-off switching strategy for energy efficient massive MIMO HetNets. Proc. IEEE INFOCOM, p.1395–1403.Google Scholar
  27. Fodor, G., Dahlman, E., Mildh, G., et al., 2012. Design aspects of network assisted device-to-device communications. IEEE Commun. Mag., 50(3): 170–177. http://dx.doi.org/10.1109/MCOM.2012.6163598CrossRefGoogle Scholar
  28. Frangoudis, P.A., Polyzos, G.C., 2014. Security and performance challenges for user-centric wireless networking. IEEE Commun. Mag., 52(12): 48–55. http://dx.doi.org/10.1109/MCOM.2014.6979951CrossRefGoogle Scholar
  29. Gao, P., Chen, D., Feng, M., et al., 2013. On the interference avoidance method in two-tier LTE networks with femtocells. Proc. IEEE Wireless Communications and Networking Conf., p.3585–3590. http://dx.doi.org/10.1109/WCNC.2013.6555142Google Scholar
  30. Golrezaei, N., Shanmugam, K., Dimakis, A.G., et al., 2012. FemtoCaching: wireless video content delivery through distributed caching helpers. Proc. IEEE INFOCOM, p.1107–1115. http://dx.doi.org/10.1109/INFCOM.2012.6195469Google Scholar
  31. Golrezaei, N., Molisch, A.F., Dimakis, A.G., et al., 2013. Femtocaching and device-to-device collaboration: a new architecture for wireless video distribution. IEEE Commun. Mag., 51(4): 142–149. http://dx.doi.org/10.1109/MCOM.2013.6495773CrossRefGoogle Scholar
  32. Goyal, S., Liu, P., Hua, S., et al., 2013. Analyzing a fullduplex cellular system. Proc. 47th Annual Conf. on Information Sciences and Systems, p.1–6. http://dx.doi.org/10.1109/CISS.2013.6552310Google Scholar
  33. Gudipati, A., Perry, D., Li, L.E., et al., 2013. SoftRAN: software defined radio access network. Proc. 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, p.25–30. http://dx.doi.org/10.1145/2491185.2491207CrossRefGoogle Scholar
  34. Guimarães, C., Corujo, D., Aguiar, R.L., et al., 2013. Empowering software defined wireless networks through media independent handover management. Proc. IEEE Global Communications Conf., p.2204–2209. http://dx.doi.org/10.1109/GLOCOM.2013.6831402Google Scholar
  35. Guo, P., Jiang, T., Zhang, K., et al., 2009. Clustering algorithm in initialization of multi-hop wireless sensor networks. IEEE Trans. Wirel. Commun., 8(12): 5713–5717. http://dx.doi.org/10.1109/TWC.2009.12.080042CrossRefGoogle Scholar
  36. Hoang, A.T., Liang, Y.C., 2008. Downlink channel assignment and power control for cognitive radio networks. IEEE Trans. Wirel. Commun., 7(8): 3106–3117. http://dx.doi.org/10.1109/TWC.2008.070022CrossRefGoogle Scholar
  37. Hoydis, J., Hosseini, K., ten Brink, S., et al., 2013. Making smart use of excess antennas: massive MIMO, small cells, and TDD. Bell Labs Tech. J., 18(2): 5–21. http://dx.doi.org/10.1002/bltj.21602CrossRefGoogle Scholar
  38. Hu, D., Mao, S., 2011. Multicast in femtocell networks: a successive interference cancellation approach. Proc. IEEE Global Telecommunications Conf., p.1–6. http://dx.doi.org/10.1109/GLOCOM.2011.6134124Google Scholar
  39. Hu, D., Mao, S., 2012. On medium grain scalable video streaming over femtocell cognitive radio networks. IEEE J. Sel. Areas Commun., 30(3): 641–651. http://dx.doi.org/10.1109/JSAC.2012.120413CrossRefGoogle Scholar
  40. Hu, F., Hao, Q., Bao, K., 2014. A survey on software-defined network and OpenFlow: from concept to implementation. IEEE Commun. Surv. Tutor., 16(4): 2181–2206. http://dx.doi.org/10.1109/COMST.2014.2326417CrossRefGoogle Scholar
  41. Huang, Y., Walsh, P.A., Li, Y., et al., 2014. A distributed polling service-based MAC protocol testbed. Int. J. Commun. Syst., 27(12): 3901–3921. http://dx.doi.org/10.1002/dac.2584CrossRefGoogle Scholar
  42. Jararweh, Y., Ayyoub, M.A., Doulat, A., et al., 2014. SDCRN: software defined cognitive radio network framework. Proc. IEEE Int. Conf. on Cloud Engineering, p.592–597. http://dx.doi.org/10.1109/IC2E.2014.88Google Scholar
  43. Jiang, Z., Mao, S., 2013. Access strategy and dynamic downlink resource allocation for femtocell networks. Proc. IEEE Global Communications Conf., p.3528–3533. http://dx.doi.org/10.1109/GLOCOM.2013.6831620Google Scholar
  44. Jiang, Z., Mao, S., 2015. Energy delay trade-off in cloud offloading for multi-core mobile devices. IEEE Access, 3: 2306–2316. http://dx.doi.org/10.1109/ACCESS.2015.2499300CrossRefGoogle Scholar
  45. Kerpez, K.J., Cioffi, J.M., Ginis, G., et al., 2014. Softwaredefined access networks. IEEE Commun. Mag., 52(9): 152–159. http://dx.doi.org/10.1109/MCOM.2014.6894466CrossRefGoogle Scholar
  46. Kim, H., Feamster, N., 2013. Improving network management with software defined networking. IEEE Commun. Mag., 51(2): 114–119. http://dx.doi.org/10.1109/MCOM.2013.6461195CrossRefGoogle Scholar
  47. Kompella, S., Mao, S., Hou, Y.T., et al., 2009. On path selection and rate allocation for video in wireless mesh networks. IEEE/ACM Trans. Netw., 17(1): 212–224. http://dx.doi.org/10.1109/TNET.2008.925942CrossRefGoogle Scholar
  48. Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., et al., 2015. Software-defined networking: a comprehensive survey. Proc. IEEE, 103(1): 14–76. http://dx.doi.org/10.1109/JPROC.2014.2371999CrossRefGoogle Scholar
  49. Lee, H.C., Oh, D.C., Lee, Y.H., 2010. Mitigation of interfemtocell interference with adaptive fractional frequency reuse. Proc. IEEE Int. Conf. on Communications, p.1–5. http://dx.doi.org/10.1109/ICC.2010.5502298Google Scholar
  50. Li, Y., Mao, S., Panwar, S.S., et al., 2008. On the performance of distributed polling service-based medium access control. IEEE Trans. Wirel. Commun., 7(11): 4635–4645. http://dx.doi.org/10.1109/T-WC.2008.070666CrossRefGoogle Scholar
  51. Luo, T., Tan, H.P., Quek, T.Q.S., 2012. Sensor OpenFlow: enabling software-defined wireless sensor networks. IEEE Commun. Lett., 16(11): 1896–1899. http://dx.doi.org/10.1109/LCOMM.2012.092812.121712CrossRefGoogle Scholar
  52. Madan, R., Borran, J., Sampath, A., et al., 2010. Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun., 28(9): 1479–1489. http://dx.doi.org/10.1109/JSAC.2010.101209CrossRefGoogle Scholar
  53. Mao, S., Hou, Y.T., 2004. BeamStar: a new low-cost data routing technology for wireless sensor networks. Proc. IEEE Global Telecommunications Conf., p.2919–2924. http://dx.doi.org/10.1109/GLOCOM.2004.1378888Google Scholar
  54. Mao, S., Lin, S., Panwar, S.S., et al., 2003. Video transport over ad hoc networks: multistream coding with multipath transport. IEEE J. Sel. Areas Commun., 21(10): 1721–1737. http://dx.doi.org/10.1109/JSAC.2003.815965CrossRefGoogle Scholar
  55. Mao, S., Lin, S., Wang, Y., et al., 2005. Multipath video transport over wireless ad hoc networks. IEEE Wirel. Commun., 12(4): 42–49. http://dx.doi.org/10.1109/MWC.2005.1497857CrossRefGoogle Scholar
  56. Mao, S., Bushmitch, D., Narayanan, S., et al., 2006. MRTP: a multi-flow real-time transport protocol for ad hoc networks. IEEE Trans. Multim., 8(2): 356–369. http://dx.doi.org/10.1109/TMM.2005.864347CrossRefGoogle Scholar
  57. Mao, S., Cheng, X., Hou, Y., et al., 2007. On joint routing and server selection for MD video streaming in ad hoc networks. IEEE Trans. Wirel. Commun., 6(1): 338–347. http://dx.doi.org/10.1109/TWC.2007.05236CrossRefGoogle Scholar
  58. Mao, S., Hou, Y.T., Sherali, H.D., et al., 2008. Multimediacentric routing for multiple description video in wireless mesh networks. IEEE Netw., 22(1): 19–24. http://dx.doi.org/10.1109/MNET.2008.4435898CrossRefGoogle Scholar
  59. Mitola, J., Maguire, G.Q., 1999. Cognitive radio: making software radios more personal. IEEE Pers. Commun., 6(4): 13–18. http://dx.doi.org/10.1109/98.788210CrossRefGoogle Scholar
  60. Nunes, B.A.A., Mendonca, M., Nguyen, X.N., et al., 2014. A survey of software-defined networking: past, present, future of programmable networks. IEEE Commun. Surv. Tutor., 16(3): 1617–1634. http://dx.doi.org/10.1109/SURV.2014.012214.00180CrossRefGoogle Scholar
  61. Pentikousis, K., Wang, Y., Hu, W., 2013. MobileFlow: toward software-defined mobile networks. IEEE Commun. Mag., 51(7): 44–53. http://dx.doi.org/10.1109/MCOM.2013.6553677CrossRefGoogle Scholar
  62. Qiang, L., Li, J., Huang, C., 2014. A software-defined network based vertical handoff scheme for heterogeneous wireless networks. Proc. IEEE Global Communications Conf., p.4671–4676. http://dx.doi.org/10.1109/GLOCOM.2014.7037545Google Scholar
  63. Saquib, N., Hossain, E., Le, L.B., et al., 2012. Interference management in OFDMA femtocell networks: issues and approaches. IEEE Wirel. Commun., 19(3): 86–95. http://dx.doi.org/10.1109/MWC.2012.6231163CrossRefGoogle Scholar
  64. Schulz-Zander, J., Suresh, L., Sarrar, N., et al., 2014. Programmatic orchestration of WiFi networks. Proc. USENIX Annual Technical Conf., p.347–358.Google Scholar
  65. Sezer, S., Scott-Hayward, S., Chouhan, P.K., et al., 2013. Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Commun. Mag., 51(7): 36–43. http://dx.doi.org/10.1109/MCOM.2013.6553676CrossRefGoogle Scholar
  66. Son, I.K., Mao, S., Sajal, K.D., 2014a. On the design and optimization of a free space optical access network. Opt. Switch. Netw., 11(A):29–43. http://dx.doi.org/10.1016/j.osn.2013.08.004CrossRefGoogle Scholar
  67. Son, I.K., Mao, S., Sajal, K.D., 2014b. On joint topology design and load balancing in free-space optical networks. Opt. Switch. Netw., 11(A):92–104. http://dx.doi.org/10.1016/j.osn.2013.08.001CrossRefGoogle Scholar
  68. Tang, N., Mao, S., Kompella, S., 2016. On power control in full duplex underlay cognitive radio networks. Ad Hoc Netw., 37(2): 183–194. http://dx.doi.org/10.1016/j.adhoc.2015.08.018CrossRefGoogle Scholar
  69. Vestin, J., Dely, P., Kassler, A., et al., 2013. CloudMAC: towards software defined WLANs. ACM SIGMOBILE Mob. Comput. Commun. Rev., 16(4): 42–45. http://dx.doi.org/10.1145/2436196.2436217CrossRefGoogle Scholar
  70. Wang, X., Mao, S., 2012. Distributed power control in full duplex wireless networks. Proc. IEEE Wireless Communications and Networking Conf., p.1165–1170. http://dx.doi.org/10.1109/WCNC.2015.7127634Google Scholar
  71. Xia, W., Wen, Y., Foh, C., et al., 2015. A survey on software-defined networking. IEEE Commun. Surv. Tutor., 17(1): 27–51. http://dx.doi.org/10.1109/COMST.2014.2330903CrossRefGoogle Scholar
  72. Xing, Y., Mathur, C.N., Haleem, M.A., et al., 2007. Dynamic spectrum access with QoS and interference temperature constraints. IEEE Trans. Mob. Comput., 6(4): 423–433. http://dx.doi.org/10.1109/TMC.2007.50CrossRefGoogle Scholar
  73. Xu, Y., Mao, S., 2015). User association in massive MIMO HetNets. IEEE Syst. J., in press. http://dx.doi.org/10.1109/JSYST.2015.2475702
  74. Xu, Y., Mao, S., Su, X., 2012. On adopting interleave division multiple access to two-tier femtocell networks: the uplink case. Proc. IEEE Int. Conf. on Communications, p.591–595. http://dx.doi.org/10.1109/ICC.2012.6364000Google Scholar
  75. Xu, Y., Yue, G., Mao, S., 2014. User grouping for massive MIMO in FDD systems: new design methods and analysis. IEEE Access, 2: 947–959. http://dx.doi.org/10.1109/ACCESS.2014.2353297CrossRefGoogle Scholar
  76. Ye, Q., Rong, B., Chen, Y., et al., 2013. User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun., 12(6): 2706–2716. http://dx.doi.org/10.1109/TWC.2013.040413.120676CrossRefGoogle Scholar
  77. Yeganeh, S.H., Tootoonchian, A., Ganjali, Y., 2013. On scalability of software-defined networking. IEEE Commun. Mag., 51(2): 136–141. http://dx.doi.org/10.1109/MCOM.2013.6461198CrossRefGoogle Scholar
  78. Yick, J., Mukherjee, B., Ghosal, D., 2008. Wireless sensor network survey. Comput. Netw., 52(12): 2292–2330. http://dx.doi.org/10.1016/j.comnet.2008.04.002CrossRefGoogle Scholar
  79. Zhang, R., Song, L., Han, Z., et al., 2013. Distributed resource allocation for device-to-device communications underlaying cellular networks. Proc. IEEE Int. Conf. on Communications, p.1889–1893. http://dx.doi.org/10.1109/ICC.2013.6654797Google Scholar
  80. Zhao, Y., Mao, S., Neel, J.O., et al., 2009. Performance evaluation of cognitive radios: metrics, utility functions, and methodology. Proc. IEEE, 97(4): 642–659. http://dx.doi.org/10.1109/JPROC.2009.2013017CrossRefGoogle Scholar
  81. Zhou, H., Mao, S., Agrawal, P., 2015a. Approximation algorithms for cell association and scheduling in femtocell networks. IEEE Trans. Emerg. Topics Comput., 3(3): 432–443. http://dx.doi.org/10.1109/TETC.2015.2395093CrossRefGoogle Scholar
  82. Zhou, H., Hu, D., Mao, S., et al., 2015b). Cell association and handover management in femtocell networks. Proc. IEEE Wireless Communications and Networking Conf., p.661–666. http://dx.doi.org/10.1109/WCNC.2013.6554642Google Scholar
  83. Zhu, Z., Gupta, P., Wang, Q., et al., 2011). Virtual base station pool: towards a wireless network cloud for radio access networks. Proc. 8th ACM Int. Conf. on Computing Frontiers, Article 34. http://dx.doi.org/10.1145/2016604.2016646

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringAuburn UniversityAuburnUSA
  2. 2.School of Electronics & Information EngineeringHuazhong University of Science & TechnologyWuhanChina

Personalised recommendations