Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search

  • Jing-fa Liu
  • Liang Hao
  • Gang Li
  • Yu Xue
  • Zhao-xia Liu
  • Juan Huang
Article

Abstract

The layout design of satellite modules is considered to be NP-hard. It is not only a complex coupled system design problem but also a special multi-objective optimization problem. The greatest challenge in solving this problem is that the function to be optimized is characterized by a multitude of local minima separated by high-energy barriers. The Wang-Landau (WL) sampling method, which is an improved Monte Carlo method, has been successfully applied to solve many optimization problems. In this paper we use the WL sampling method to optimize the layout of a satellite module. To accelerate the search for a global optimal layout, local search (LS) based on the gradient method is executed once the Monte-Carlo sweep produces a new layout. By combining the WL sampling algorithm, the LS method, and heuristic layout update strategies, a hybrid method called WL-LS is proposed to obtain a final layout scheme. Furthermore, to improve significantly the efficiency of the algorithm, we propose an accurate and fast computational method for the overlapping depth between two objects (such as two rectangular objects, two circular objects, or a rectangular object and a circular object) embedding each other. The rectangular objects are placed orthogonally. We test two instances using first 51 and then 53 objects. For both instances, the proposed WL-LS algorithm outperforms methods in the literature. Numerical results show that the WL-LS algorithm is an effective method for layout optimization of satellite modules.

Keywords

Packing Layout design Satellite module Wang-Landau algorithm 

CLC number

TP391 V474 

References

  1. Allen, S.D., Burke, E.K., Kendall, G., 2011. A hybrid placement strategy for the three-dimensional strip packing problem. Eur. J. Oper. Res., 209(3): 219–227. http://dx.doi.org/10.1016/j.ejor.2010.09.023MathSciNetCrossRefGoogle Scholar
  2. Bennell, J.A., Dowsland, K.A., Dowsland, W.B., 2001. The irregular cutting-stock problem—a new procedure for deriving the no-fit polygon. Comput. Oper. Res., 28(3): 271–287. http://dx.doi.org/10.1016/S0305-0548(00)00021-6CrossRefGoogle Scholar
  3. Chen, W., Shi, Y.J., Teng, H.F., 2008. An improved differential evolution with local search for constrained layout optimization of satellite module. LNCS, 5227:742–749. http://dx.doi.org/10.1007/978-3-540-85984-0_89Google Scholar
  4. Crainic, T.G., Perboli, G., Rei, W., et al., 2011. Efficient lower bounds and heuristics for the variable cost and size bin packing problem. Comput. Oper. Res., 38(11): 1474–1482. http://dx.doi.org/10.1016/j.cor.2011.01.001MathSciNetCrossRefGoogle Scholar
  5. Gonçalves, J.F., Resende, M.G., 2011. A parallel multipopulation genetic algorithm for a constrained twodimensional orthogonal packing problem. J. Comb. Optim., 22(2): 180–201. http://dx.doi.org/10.1007/s10878-009-9282-1MathSciNetCrossRefGoogle Scholar
  6. He, K., Mo, D.Z., Xu, R.C., et al., 2013. A quasi-physical algorithm based on coarse and fine adjustment for solving circles packing problem with constraints of equilibrium. Chin. J. Comput., 36(6): 1224–1234 (in Chinese). http://dx.doi.org/10.3724/SP.J.1016.2013.01224MathSciNetCrossRefGoogle Scholar
  7. Huang, W.Q., Kang, Y., 2004. A short note on a simple search heuristic for the diskspacking problem. Ann. Oper. Res., 131(1-4):101–108. http://dx.doi.org/10.1023/B:ANOR.0000039514.14699.03MathSciNetCrossRefGoogle Scholar
  8. Huo, J.Z., Teng, H.F., 2009. Optimal layout design of a satellite module using a coevolutionary method with heuristic rules. J. Aerosp. Eng., 22(2): 101–111. http://dx.doi.org/10.1061/(ASCE)0893-1321(2009)22:2(101)CrossRefGoogle Scholar
  9. Jin, B., Teng, H.F., 2007. Case-based evolutionary design approach for satellite module layout. J. Sci. Ind. Res., 66(12): 989–994.Google Scholar
  10. Khanafer, A., Clautiaux, F., Talbi, E.G., 2012. Treedecomposition based heuristics for the two-dimensional bin packing problem with conflicts. Comput. Oper. Res., 39(1): 54–63. http://dx.doi.org/10.1016/j.cor.2010.07.009MathSciNetCrossRefGoogle Scholar
  11. Landau, D.P., Tsai, S.H., Exler, M., 2004. A new approach to Monte Carlo simulations in statistical physics: Wang-Landau sampling. Am. J. Phys., 72(10): 1294–1302. http://dx.doi.org/10.1119/1.1707017CrossRefGoogle Scholar
  12. Lei, K.Y., Qiu, Y.H., 2006. A study of constrained layout optimization using adaptive particle swarm optimizer. J. Comput. Res. Dev., 43:1724–1731 (in Chinese).CrossRefGoogle Scholar
  13. Li, Z.Q., 2010. A fast projection-separation approach for collision detection between polytopes. J. Comput. Aid. Des. Comput. Graph., 22(4): 639–646 (in Chinese).Google Scholar
  14. Li, Z.Q., Xie, Y.F., Tian, Z.J., et al., 2012. A heuristic particle swarm optimization with quasi-human strategy for weighted circles packing problem. 8th Int. Conf. on Natural Computation, p.723–727. http://dx.doi.org/10.1109/ICNC.2012.6234660Google Scholar
  15. Liu, J.F., Li, G., 2010. Basin filling algorithm for the circular packing problem with equilibrium behavioral constraints. Sci. Chin. Inf. Sci., 53(5): 885–895 (in Chinese). http://dx.doi.org/10.1007/s11432-010-0080-2MathSciNetCrossRefGoogle Scholar
  16. Liu, J.F., Xue, S.J., Liu, Z.X., et al., 2009. An improved energy landscape paving algorithm for the problem of packing circles into a larger containing circle. Comput. Ind. Eng., 57(3): 1144–1149. http://dx.doi.org/10.1016/j.cie.2009.05.010CrossRefGoogle Scholar
  17. Liu, J.F., Li, G., Chen, D.B., et al., 2010. Two-dimensional equilibrium constraint layout using simulated annealing. Comput. Ind. Eng., 59(4): 530–536. http://dx.doi.org/10.1016/j.cie.2010.06.009CrossRefGoogle Scholar
  18. Liu, J.F., Li, G., Geng, H.T., 2011. A new heuristic algorithm for the circular packing problem with equilibrium constraints. Sci. Chin. Inf. Sci., 54(8): 1572–1584. http://dx.doi.org/10.1007/s11432-011-4351-3MathSciNetCrossRefGoogle Scholar
  19. Liu, Z.W., Teng, H.F., 2008. Human–computer cooperative layout design method and its application. Comput. Ind. Eng., 55(4): 735–757. http://dx.doi.org/10.1016/j.cie.2006.11.007CrossRefGoogle Scholar
  20. Martello, S., Pisinger, D., Vigo, D., 2000. The threedimensional bin packing problem. Oper. Res., 48(2): 256–267. http://dx.doi.org/10.1287/opre.48.2.256.12386MathSciNetCrossRefGoogle Scholar
  21. Moon, I., Nguyen, T.V.L., 2014. Container packing problem with balance constraints. OR Spectr., 36(4): 837–878. http://dx.doi.org/10.1007/s00291-013-0356-1MathSciNetCrossRefGoogle Scholar
  22. Schulz, B.J., Binder, K., Müller, M., et al., 2003. Avoiding boundary effects in Wang-Landau sampling. Phys. Rev. E, 67(6):067102. http://dx.doi.org/10.1103/PhysRevE.67.067102CrossRefGoogle Scholar
  23. Seaton, D.T., Wüst, T., Landau, D.P., 2010. Collapse transitions in a flexible homopolymer chain: application of the Wang-Landau algorithm. Phys. Rev. E, 81(1):011802. http://dx.doi.org/10.1103/PhysRevE.81.011802CrossRefGoogle Scholar
  24. Sun, Z.G., Teng, H.F., 2003. Optimal layout design of a satellite module. Eng. Optim., 35(5): 513–529. http://dx.doi.org/10.1080/03052150310001602335CrossRefGoogle Scholar
  25. Tang, F., Teng, H.F., 1999. A modified genetic algorithm and its application to layout optimization. J. Softw., 10(10): 1096–1102 (in Chinese).Google Scholar
  26. Teng, H.F., Chen, Y., Zeng, W., et al., 2010. A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module layout design. IEEE Trans. Evol. Comput., 14(3): 438–455. http://dx.doi.org/10.1109/TEVC.2009.2033585CrossRefGoogle Scholar
  27. Wang, F., Landau, D.P., 2001. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett., 86(10):2050. http://dx.doi.org/10.1103/PhysRevLett.86.2050CrossRefGoogle Scholar
  28. Wang, Y.S., Teng, H.F., 2009. Knowledge fusion design method: satellite module layout. Chin. J. Aeronaut., 22(1): 32–42. http://dx.doi.org/10.1016/S1000-9361(08)60066-7CrossRefGoogle Scholar
  29. Wu, M.H., Yu, Y.X., Zhou, J., 1997. An octree algorithm for collision detection using space partition. Chin. J. Comput., 20(9): 849–854 (in Chinese).Google Scholar
  30. Xu, Y.C., Xiao, R.B., 2008. Ant colony algorithm for layout optimization with equilibrium constraints. Contr. Dec., 23(1): 25–29 (in Chinese).MATHGoogle Scholar
  31. Zhang, B., Teng, H.F., Shi, Y.J., 2008. Layout optimization of satellite module using soft computing techniques. Appl. Soft Comput., 8(1): 507–521. http://dx.doi.org/10.1016/j.asoc.2007.03.004CrossRefGoogle Scholar
  32. Zhang, D.F., Deng, A.S., Kang, Y., 2005. A hybrid heuristic algorithm for the rectangular packing problem. Int. Conf. on Computational Science, p.783–791. http://dx.doi.org/10.1007/11428831_97Google Scholar
  33. Zhang, Z.H., Wang, Y.S., Teng, H.F., et al., 2013. Parallel dual-system cooperative co-evolutionary differential evolution algorithm with human-computer cooperation for multi-cabin satellite layout optimization. J. Converg. Inform. Technol., 8(4): 711–720. http://dx.doi.org/10.4156/jcit.vol8.issue4.82CrossRefGoogle Scholar
  34. Zhou, C., Bhatt, R.N., 2005. Understanding and improving the Wang-Landau algorithm. Phys. Rev. E, 72(2): 025701. http://dx.doi.org/10.1103/PhysRevE.72.025701CrossRefGoogle Scholar
  35. Zhou, C., Gao, L., Gao, H.B., 2005. Particle swarm optimization based algorithm for constrained layout optimization. Contr. Dec., 20(1): 36–40 (in Chinese).MATHGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jing-fa Liu
    • 1
    • 2
  • Liang Hao
    • 1
    • 2
  • Gang Li
    • 3
  • Yu Xue
    • 1
    • 2
  • Zhao-xia Liu
    • 4
  • Juan Huang
    • 1
    • 2
  1. 1.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Computer & SoftwareNanjing University of Information Science & TechnologyNanjingChina
  3. 3.School of Mathematics and StatisticsNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Office of Informationization Construction and ManagementNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations