A performance analysis of multi-satellite joint geolocation

Article
  • 51 Downloads

Abstract

Determining the position of an emitter on Earth by using a satellite cluster has many important applications, such as in navigation, surveillance, and remote sensing. However, in realistic situations, a number of factors, such as errors in the measurement of signal parameters, uncertainties regarding the position of satellites, and errors in the location of calibration sources, are known to degrade the accuracy of target localization in satellite geolocation systems. We systematically analyze the performance of multi-satellite joint geolocation based on time difference of arrival (TDOA) measurements. The theoretical analysis starts with Cramér–Rao bound (CRB) derivations for four localization scenarios under an altitude constraint and Gaussian noise assumption. In scenario 1, only the TDOA measurement errors of the emitting source are considered and the satellite positions are assumed to be perfectly estimated. In scenario 2, both the TDOA measurement errors and satellite position uncertainties are taken into account. Scenario 3 assumes that some calibration sources with accurate position information are used to mitigate the influence of satellite position perturbations. In scenario 4, several calibration sources at inaccurate locations are used to alleviate satellite position errors in target localization. Through comparing the CRBs of the four localization scenarios, some valuable’s insights are gained into the effects of various error sources on the estimation performance. Two kinds of location mean-square errors (MSE) expressions under the altitude constraint are derived through first-order perturbation analysis and the Lagrange method. The first location MSE provides the theoretical prediction when an estimator assumes that the satellite locations are accurate but in fact have errors. The second location MSE provides the localization accuracy if an estimator assumes that the known calibration source locations are precise while in fact erroneous. Simulation results are included to verify the theoretical analysis.

Key words

Satellite geolocation Time difference of arrival (TDOA) Cramér–Rao bound (CRB) Calibration sources Performance analysis 

CLC number

TN911.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardelli, R., Haworth, D., Smith, N., 1995. Interference lo-calization for the EUTELSAT satellite system. Proc. IEEE Int. Conf. on Globecom, p.1641–1651. http://dx.doi.org/10.1109/GLOCOM.1995.502690Google Scholar
  2. Cheung, K.W., So, H.C., Ma, W.K., et al., 2006. A constrained least squares approach to mobile positioning: algorithms and optimality. EURASIP J. Appl. Signal Process., 2006:1–23. http://dx.doi.org/10.1155/ASP/2006/20858Google Scholar
  3. Ding, W., 2014. The geolocation performance analysis for the constrained Taylor-series iteration in the presence of saellite orbit perturbations. Sci. China Inform. Sci., 44(2):231–253. http://dx.doi.org/10.1360/112013-121Google Scholar
  4. Ha, T.T., Robertson, R.C., 1987. Geostationary satellite nav-igation systems. IEEE Trans. Aerosp. Electron. Syst., 23(2):247–254. http://dx.doi.org/10.1109/TAES.1987.313379CrossRefGoogle Scholar
  5. Haworth, D.P., Smith, N.G., Bardelli, R., et al., 1997. Inter-ference localization for EUTELSAT satellites—the first European transmitter location system. Int. J. Satell. Commun., 15(4):155–183. http://dx.doi.org/10.1002/(SICI)1099-1247(199707/08)15:4<155::AID-SAT577>3.0.CO;2-UCrossRefGoogle Scholar
  6. Ho, K.C., Xu, W.W., 2004. An accurate algebraic solution for moving source location using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 52(9):2453–2463. http://dx.doi.org/10.1109/TSP.2004.831921MathSciNetCrossRefGoogle Scholar
  7. Ho, K.C., Yang, L., 2008. On the use of a calibration emitter for source localization in the presence of sensor position uncertainty. IEEE Trans. Signal Process., 56(12):5758–5772. http://dx.doi.org/10.1109/TSP.2008.929870MathSciNetCrossRefGoogle Scholar
  8. Ho, K.C., Lu, X.N., Kovavisaruch, L., 2007. Source localiza-tion using TDOA and FDOA measurements in the pres-ence of receiver location errors: analysis and solution. IEEE Trans. Signal Process., 55(2):684–696. http://dx.doi.org/10.1109/TSP.2006.885744MathSciNetCrossRefGoogle Scholar
  9. Ho, K.C., Chan, Y.T., 1993. Solution and performance analy-sis of geolocation by TDOA. IEEE Trans. Aerosp. Elec-tron. Syst., 29(4):1311–1322. http://dx.doi.org/10.1109/7.259534CrossRefGoogle Scholar
  10. Ho, K.C., Chan, Y.T., 1997. Geolocation of a known altitude object from TDOA and FDOA measurements. IEEE Trans. Aerosp. Electron. Syst., 33(3):770–783. http://dx.doi.org/10.1109/7.599239CrossRefGoogle Scholar
  11. Huang, Y., Benesty, J., Elko, G.W., et al., 2001. Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Trans. Speech Audio Pro-cess., 9(8):943–956. http://dx.doi.org/10.1109/89.966097CrossRefGoogle Scholar
  12. Kovavisaruch, L., Ho, K.C., 2005. Modified Taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions. Proc. IEEE Int. Symp. on Circuits and Systems, p.2295–2298. http://dx.doi.org/10.1109/ISCAS.2005.1465082Google Scholar
  13. Lee, K.E., Ahn, D.M., Lee, Y.J., et al., 2000. A total squares algorithm for the source location estimation using GEO satellites. Proc. 21st Century Military Communications Conf., p.271–275. http://dx.doi.org/10.1109/MILCOM.2000.904954Google Scholar
  14. Lu, X.N., Ho, K.C., 2006a. Taylor-series technique for source localization using AOAs in the presence of sensor loca-tion errors. Proc. 4th IEEE Workshop on Sensor Array and Multichannel Processing, p.190–194. http://dx.doi.org/10.1109/SAM.2006.1706119Google Scholar
  15. Lu, X.N., Ho, K.C., 2006b. Analysis of the degradation in source location accuracy in the presence of sensor loca-tion error. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.925–928. http://dx.doi.org/10.1109/ICASSP.2006.1661121Google Scholar
  16. Marzetta, T.L., 1993. A simple derivation of the constrained multiple parameter Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process., 41(6):2247–2249. http://dx.doi.org/10.1109/78.218151MathSciNetCrossRefGoogle Scholar
  17. Mason, J., 2004. Algebraic two-satellite TOA/FOA position solution on an ellipsoidal Earth. IEEE Trans. Aerosp. Electron. Syst., 40(3):1087–1092. http://dx.doi.org/10.1109/TAES.2004.1337476CrossRefGoogle Scholar
  18. Mušicki, D., Koch, W., 2008. Geolocation using TDOA and FDOA measurements. Proc. 11th IEEE Int. Conf. on In-formation Fusion, p.1–8.Google Scholar
  19. Mušicki, D., Kaune, R., Koch, W., 2010. Mobile emitter geo-location and tracking using TDOA and FDOA meas-urements. IEEE Trans. Signal Process., 58(3):1863–1874. http://dx.doi.org/10.1109/TSP.2009.2037075MathSciNetCrossRefGoogle Scholar
  20. Niezgoda, G.H., Ho, K.C., 1994. Geolocalization by combined range difference and range rate difference measurements. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.357–360. http://dx.doi.org/10.1109/ICASSP.1994.389616Google Scholar
  21. Pattison, T., Chou, S.I., 2000. Sensitivity analysis of dual-satellite geolocation. IEEE Trans. Aerosp. Electron. Syst., 36(1):56–71. http://dx.doi.org/10.1109/7.826312CrossRefGoogle Scholar
  22. Witzgall, H., 2014. Ground vehicle Doppler geolocation. Proc. IEEE Int. Conf. on Aerospace, p.1–8. http://dx.doi.org/10.1109/AERO.2014.6836173Google Scholar
  23. Wu, S.L., Luo, J.Q., 2009. Influence of position error on TDOA and FDOA measuring of dual-satellite passive location system. Proc. 3rd IEEE Int. Symp. on Microwave, Antenna, Propagation and EMC Technologies for Wire-less Communications, p.293–296. http://dx.doi.org/10.1109/MAPE.2009.5355928Google Scholar
  24. Yang, K., An, J.P., Bu, X.Y., et al., 2010. Constrained total least-squares location algorithm using time-difference-of-arrival measurements. IEEE Trans. Veh. Technol., 59(3):1558–1562. http://dx.doi.org/10.1109/TVT.2009.2037509CrossRefGoogle Scholar
  25. Yang, K.H., Jiang, L.Z., Luo, Z.Q., 2011. Efficient semidefi-nite relaxation for robust geolocation of unknown emitter by a satellite cluster using TDOA and FDOA measure-ments. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.2584–2587. http://dx.doi.org/10.1109/ICASSP.2011.5947013Google Scholar
  26. Yang, L., Ho, K.C., 2010a. On using multiple calibration emitters and their geometric effects for removing sensor position errors in TDOA localization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.14–19. http://dx.doi.org/10.1109/ICASSP.2010.5496241Google Scholar
  27. Yang, L., Ho, K.C., 2010b. Alleviating sensor position error in source localization using calibration emitters at inaccu-rate locations. IEEE Trans. Signal Process., 58(1):67–83. http://dx.doi.org/10.1109/TSP.2009.2028947MathSciNetCrossRefGoogle Scholar
  28. Yu, H., Huang, G., Gao, J., 2012. Constrained total least-squares localization algorithm using time difference of arrival and frequency difference of arrival measure-ments with sensor location uncertainties. IET Radar So-nar Navig., 6(9):891–899. http://dx.doi.org/10.1049/iet-rsn.2011.0205CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Digital Switching System Engineering & Technological Research CenterZhengzhouChina
  2. 2.Zhengzhou Information Science and Technology InstituteZhengzhouChina

Personalised recommendations