Skip to main content
Log in

Intelligent computing budget allocation for on-road trajectory planning based on candidate curves

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation (ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution (OODE). The proposed algorithm is named IOODE with ‘I’ representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution (DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, L., Jiang, Y., Huang, D., 2012. A novel two-level optimization framework based on constrained ordinal optimization and evolutionary algorithms for scheduling of multipipeline crude oil blending. Ind. Eng. Chem. Res., 51(26): 9078–9093. http://dx.doi.org/10.1021/ie202224w

    Article  Google Scholar 

  • Bechhofer, R.E., Santner, T.J., Goldsman, D.M., 1995. Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons. Wiley, New York, USA.

    Google Scholar 

  • Bengler, K., Dietmayer, K., Farber, B., et al., 2014. Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag., 6(4): 6–22. http://dx.doi.org/10.1109/MITS.2014.2336271

    Article  Google Scholar 

  • Branke, J., Chick, S.E., Schmidt, C., 2007. Selecting a selection procedure. Manag. Sci., 53(12): 1916–1932. http://dx.doi.org/10.1287/mnsc.1070.0721

    Article  Google Scholar 

  • Chen, C., Lee, L.H., 2010. Stochastic Simulation Optimization: an Optimal Computing Budget Allocation. World Scientific, USA.

    Book  Google Scholar 

  • Chen, C., Yüesan, E., 2005. An alternative simulation budget allocation scheme for efficient simulation. Int. J. Simul. Process Model., 1(1/2):49–57. http://dx.doi.org/10.1504/IJSPM.2005.007113

    Article  Google Scholar 

  • Chen, C., Lin, J., Yü cesan, E., et al., 2000. Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discr. Event Dyn. Syst., 10(3): 251–270. http://dx.doi.org/10.1023/A:1008349927281

    Article  MathSciNet  Google Scholar 

  • Chen, C., Chick, S.E., Lee, L.H., et al., 2015. Ranking and selection: efficient simulation budget allocation. In: Fu, M.C. (Ed.), Handbook of Simulation Optimization. Springer, New York, USA. http://dx.doi.org/10.1007/978-1-4939-1384-8_3

    Google Scholar 

  • Chick, S.E., Inoue, K., 2001. New two-stage and sequential procedures for selecting the best simulated system. Oper. Res., 49(5): 732–743. http://dx.doi.org/10.1287/opre.49.5.732.10615

    Article  Google Scholar 

  • Chu, K., Lee, M., Sunwoo, M., 2012. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst., 13(4): 1599–1616. http://dx.doi.org/10.1109/TITS.2012.2198214

    Article  Google Scholar 

  • Fu, X., Jiang, Y., Huang, D., et al., 2015. A novel real-time trajectory planning algorithm for intelligent vehicles. Contr. Dec., 30(10): 1751–1758 (in Chinese).

    Google Scholar 

  • Gehrig, S.K., Stein, F.J., 2007. Collision avoidance for vehicle-following systems. IEEE Trans. Intell. Transp. Syst., 8(2): 233–244. http://dx.doi.org/10.1109/TITS.2006.888594

    Article  Google Scholar 

  • Glaser, S., Vanholme, B., Mammar, S., et al., 2010. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction. IEEE Trans. Intell. Transp. Syst., 11(3): 589–606. http://dx.doi.org/10.1109/TITS.2010.2046037

    Article  Google Scholar 

  • Hilgert, J., Hirsch, K., Bertram, T., et al., 2003. Emergency path planning for autonomous vehicles using elastic band theory. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1390–1395. http://dx.doi.org/10.1109/AIM.2003.1225546

    Google Scholar 

  • Ho, Y., Zhao, Q., Jia, Q., 2007. Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York, USA. http://dx.doi.org/10.1007/978-0-387-68692-9

    Book  Google Scholar 

  • Kim, S., Nelson, B.L., 2001. A fully sequential procedure for indifference-zone selection in simulation. ACM Trans. Model. Comput. Simul., 11(3): 251–273. http://dx.doi.org/10.1145/502109.502111

    Article  Google Scholar 

  • Köhler, S., Schreiner, B., Ronalter, S., et al., 2013. Autonomous evasive maneuvers triggered by infrastructure-based detection of pedestrian intentions. Proc. IEEE Intelligent Vehicles Symp., p.519–526. http://dx.doi.org/10.1109/IVS.2013.6629520

    Google Scholar 

  • Kuwata, Y., Teo, J., Fiore, G., et al., 2009. Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Contr. Syst. Technol., 17(5): 1105–1118. http://dx.doi.org/10.1109/TCST.2008.2012116

    Article  Google Scholar 

  • Ma, L., Xue, J., Kawabata, K., et al., 2015. Efficient sampling-based motion planning for on-road autonomous driving. IEEE Trans. Intell. Transp. Syst., 16(4): 1961–1976. http://dx.doi.org/10.1109/TITS.2015.2389215

    Article  Google Scholar 

  • McNaughton, M., Urmson, C., Dolan, J.M., et al., 2011. Motion planning for autonomous driving with a conformal spatiotemporal lattice. Proc. IEEE Int. Conf. on Robotics and Automation, p.4889–4895. http://dx.doi.org/10.1109/ICRA.2011.5980223

    Google Scholar 

  • Montemerlo, M., Becker, J., Bhat, S., et al., 2008. Junior: the Stanford entry in the urban challenge. J. Field Robot., 25(9): 569–597. http://dx.doi.org/10.1002/rob.20258

    Article  Google Scholar 

  • Papadimitriou, I., Tomizuka, M., 2003. Fast lane changing computations using polynomials. Proc. American Control Conf., p.48–53. http://dx.doi.org/10.1109/ACC.2003.1238912

    Google Scholar 

  • Reif, J.H., 1979. Complexity of the mover’s problem and generalizations. Proc. 20th Annual Symp. on Foundations of Computer Science, p.421–427. http://dx.doi.org/10.1109/SFCS.1979.10

    Google Scholar 

  • Urmson, C., Anhalt, J., Bagnell, D., et al., 2008. Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot., 25(8): 425–466. http://dx.doi.org/10.1002/rob.20255

    Article  Google Scholar 

  • Ziegler, J., Stiller, C., 2009. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1879–1884. http://dx.doi.org/10.1109/IROS.2009.5354448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-xin Fu or Yong-heng Jiang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61273039)

ORCID: Yong-heng JIANG, http://orcid.org/0000-0002-9551-9846

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Xx., Jiang, Yh., Huang, Dx. et al. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves. Frontiers Inf Technol Electronic Eng 17, 553–565 (2016). https://doi.org/10.1631/FITEE.1500269

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500269

Keywords

CLC number

Navigation