Skip to main content
Log in

An analysis in metal barcode label design for reference

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We employ nondestructive evaluation involving AC field measurement in detecting and identifying metal barcode labels, providing a reference for design. Using the magnetic scalar potential boundary condition at notches in thin-skin field theory and 2D Fourier transform, we introduce an analytical model for the magnetic scalar potential induced by the interaction of a high-frequency inducer with a metal barcode label containing multiple narrow saw-cut notches, and then calculate the magnetic field in the free space above the metal barcode label. With the simulations of the magnetic field, qualitative analysis is given for the effects on detecting and identifying metal barcode labels, which are caused by metal material, notch characteristics, exciting inducer properties, and other factors that can be used in metal barcode label design as reference. Simulation results are in good accordance with experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amineh, R.K., Ravan, M., Sadeghi, S.H.H., et al., 2008. Using AC field measurement data at an arbitrary liftoff distance to size long surface-breaking cracks in ferrous metals. NDT & E Int., 41(3):169–177. http://dx.doi.org/10.1016/j.ndteint.2007.10.002

    Article  Google Scholar 

  • Auld, B.A., Moulder, J.C., 1999. Review of advances in quantitative eddy current nondestructive evaluation. J. Nondestruct. Eval., 18(1):3–36. http://dx.doi.org/10.1023/A:1021898520626

    Article  Google Scholar 

  • Bowler, J.R., 1994. Eddy-current interaction with an ideal crack. I. the forward problem. J. Appl. Phys., 75(12): 8128–8137. http://dx.doi.org/10.1063/1.356511

    Article  Google Scholar 

  • Bowler, J.R., Harfield, N., 1998. Evaluation of probe impedance due to thin-skin eddy-current interaction with surface cracks. IEEE Trans. Magnet., 34(2):515–523. http://dx.doi.org/10.1109/20.661483

    Article  Google Scholar 

  • Bowler, J.R., Sabbagh, L., Sabbagh, H., 1989. A theoretical and computational model of eddy-current probes incorporating volume integral and conjugate gradient methods. IEEE Trans. Magnet., 25(3):2650–2664. http://dx.doi.org/10.1109/20.24505

    Article  Google Scholar 

  • Bowler, J.R., Sabbagh, L.D., Sabbagh, H.A., 1990. Eddycurrent probe impedance due to a surface slot in a conductor. IEEE Trans. Magnet., 26(2):889–892. http://dx.doi.org/10.1109/20.106460

    Article  Google Scholar 

  • Bowler, J.R., Theodoulidis, T.P., Poulakis, N., 2012. Eddy current probe signals due to a crack at a right-angled corner. IEEE Trans. Magnet., 48(12):4735–4746. http://dx.doi.org/10.1109/TMAG.2012.2203918

    Article  Google Scholar 

  • Ditchburn, R.J., Burke, S.K., Posada, M., 2003. Eddycurrent nondestructive inspection with thin spiral coils: long cracks in steel. J. Nondestruct. Eval., 22(2):63–77. http://dx.doi.org/10.1023/A:1026340510696

    Article  Google Scholar 

  • Dodd, C.V., Deeds, W.E., 1968. Analytical solutions to eddycurrent probe-coil problems. J. Appl. Phys., 39:2829–2829. http://dx.doi.org/10.1063/1.1656680

    Article  Google Scholar 

  • French, P.C., Bond, L.J., 1988. Finite-element modeling of eddy-current nondestructive evaluation (NDE). J. Nondestruct. Eval., 7(1):55–69. http://dx.doi.org/10.1007/BF00565777

    Article  Google Scholar 

  • Grimberg, R., 2011. Electromagnetic nondestructive evaluation: present and future. Stroj. vestn. J. Mech. Eng., 57(3):204–217.

    Article  Google Scholar 

  • Lewis, A.M., Michael, D.H., Lugg, M.C., et al., 1988. Thinskin electromagnetic fields around surface-breaking cracks in metals. J. Appl. Phys., 64:3777–3777. http://dx.doi.org/10.1063/1.341384

    Article  Google Scholar 

  • Michael, D.H., Waechter, R.T., Collins, R., 1982. The measurement of surface cracks in metals by using AC electric fields. Proc. R. Soc. Lond. A, 381(1780):139–157. http://dx.doi.org/10.1098/rspa.1982.0062

    Article  Google Scholar 

  • Michael, D.H., Lewis, A.M., McIver, M., et al., 1991. Thinskin electromagnetic fields in the neighbourhood of surface-breaking cracks in metals. Proc. R. Soc. Lond. A, 434(1892):587–603. http://dx.doi.org/10.1098/rspa.1991.0115

    Article  Google Scholar 

  • Mirshekar-Syahkal, D., Mostafavi, R.F., 1997. Analysis technique for interaction of high-frequency rhombic inducer field with cracks in metals. IEEE Trans. Magnet., 33(3):2291–2298. http://dx.doi.org/10.1109/20.573845

    Article  Google Scholar 

  • Morisue, T., 1982. Magnetic vector potential and electric scalar potential in three-dimensional eddy current problem. IEEE Trans. Magnet., 18(2):531–535. http://dx.doi.org/10.1109/TMAG.1982.1061856

    Article  Google Scholar 

  • Mostafavi, R.F., Mirshekar-Syahkal, D., 1999. AC fields around short cracks in metals induced by rectangular coils. IEEE Trans. Magnet., 35(3):2001–2006. http://dx.doi.org/10.1109/20.764900

    Article  Google Scholar 

  • Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., 2011. Field distributions around a long opening in a metallic half space excited by arbitrary-frequency alternating current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 47(11):4600–4610. http://dx.doi.org/10.1109/TMAG.2011.2148176

    Article  Google Scholar 

  • Ostovarzadeh, M.H., Sadeghi, S.H.H., Moini, R., et al., 2013. Field distributions around a rectangular crack in a metallic half-space excited by long current-carrying wires with arbitrary frequency. IEEE Trans. Magnet., 49(3):1108–1118. http://dx.doi.org/10.1109/TMAG.2012.2225440

    Article  Google Scholar 

  • Presser, M., Barnaghi, P.M., Eurich, M., et al., 2009. The SENSEI project: integrating the physical world with the digital world of the network of the future. IEEE Commun. Mag., 47(4):1–4. http://dx.doi.org/10.1109/MCOM.2009.4907403

    Article  Google Scholar 

  • Ravan, M., Sadeghi, S.H.H., Moini, R., 2006. Field distributions around arbitrary shape surface cracks in metals, induced by high-frequency alternating-current-carrying wires of arbitrary shape. IEEE Trans. Magnet., 42(9): 2208–2214. http://dx.doi.org/10.1109/TMAG.2006.877655

    Article  Google Scholar 

  • Salemi, A.H., Sadeghi, S.H.H., Moini, R., 2004. Thin-skin analysis technique for interaction of arbitrary-shape inducer field with long cracks in ferromagnetic metals. NDT & E Int., 37(6):471–479. http://dx.doi.org/10.1016/j.ndteint.2003.12.002

    Article  Google Scholar 

  • Theodoulidis, T., Bowler, J., 2005. Eddy-current interaction of a long coil with a slot in a conductive plate. IEEE Trans. Magnet., 41(4):1238–1247. http://dx.doi.org/10.1109/TMAG.2005.844838

    Article  Google Scholar 

  • Theodoulidis, T., Bowler, J.R., 2010. Interaction of an eddy-current coil with a right-angled conductive wedge. IEEE Trans. Magnet., 46(4):1034–1042. http://dx.doi.org/10.1109/TMAG.2009.2036724

    Article  Google Scholar 

  • Tian, G.Y., Sophian, A., 2005. Reduction of lift-off effects for pulsed eddy current NDT. NDT & E Int., 38(4):319–324. http://dx.doi.org/10.1016/j.ndteint.2004.09.007

    Article  Google Scholar 

  • Tian, G.Y., Zhao, Z.X., Baines, R.W., 1998. The research of inhomogeneity in eddy current sensors. Sens. Actuat. A, 69(2):148–151. http://dx.doi.org/10.1016/S0924-4247(98)00085-5

    Article  Google Scholar 

  • Xu, E.X., Simkin, J., 2004. Total and reduced magnetic vector potentials and electrical scalar potential for eddy current calculation. IEEE Trans. Magnet., 40(2):938–940. http://dx.doi.org/10.1109/TMAG.2004.824887

    Article  Google Scholar 

  • Zeng, Z.W., Liu, X., Deng, Y.M., et al., 2007. Reduced magnetic vector potential and electric scalar potential formulation for eddy current modeling. Przegl. Elektrotechn., 83(6):35–37.

    Google Scholar 

  • Zeng, Z.W., Udpa, L., Udpa, S.S., 2010. Finite-element model for simulation of ferrite-core eddy-current probe. IEEE Trans. Magnet., 46(3):905–909. http://dx.doi.org/10.1109/TMAG.2009.2034651

    Article  Google Scholar 

  • Zhou, J., Lugg, M.C., Collins, R., 1999. A non-uniform model for alternating current field measurement of fatigue cracks in metals. Int. J. Appl. Electrom. Mech., 10(3):221–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-yu Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61271247)

ORCID: Yin ZHAO, http://orcid.org/0000-0002-6300-5939

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, Hg. & Zhang, Qy. An analysis in metal barcode label design for reference. Frontiers Inf Technol Electronic Eng 17, 173–184 (2016). https://doi.org/10.1631/FITEE.1500212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500212

Keywords

CLC number

Navigation