Skip to main content
Log in

Enhancing power transfer capability through flexible AC transmission system devices: a review

  • Review
  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Global demand for power has significantly increased, but power generation and transmission capacities have not increased proportionally with this demand. As a result, power consumers suffer from various problems, such as voltage and frequency instability and power quality issues. To overcome these problems, the capacity for available power transfer of a transmission network should be enhanced. Researchers worldwide have addressed this issue by using flexible AC transmission system (FACTS) devices. We have conducted a comprehensive review of how FACTS controllers are used to enhance the available transfer capability (ATC) and power transfer capability (PTC) of power system networks. This review includes a discussion of the classification of different FACTS devices according to different factors. The popularity and applications of these devices are discussed together with relevant statistics. The operating principles of six major FACTS devices and their application in increasing ATC and PTC are also presented. Finally, we evaluate the performance of FACTS devices in ATC and PTC improvement with respect to different control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABB, 2012. Flexible Alternating Current Transmission Systems (FACTS). Available from http://www.abb.com/FACTS.

    Google Scholar 

  • Abdel-Rahman, M.H., Youssef, F.M.H., Saber, A.A., 2006. New static var compensator control strategy and coordination with under-load tap changer. IEEE Trans. Power Deliv., 21(3):1630–1635. [doi:10.1109/TPWRD. 2005.858814]

    Google Scholar 

  • Abido, M.A., 1999. Thyristor controlled phase shifter based stabilizer design using simulated annealing algorithm. Proc. Int. Conf. on Electric Power Engineering, p.307–312. [doi:10.1109/PTC.1999.826739]

    Google Scholar 

  • Abido, M.A., 2009. Power system stability enhancement using FACTS controllers: a review. Arab. J. Sci. Eng., 34(1B):153–172.

    MathSciNet  Google Scholar 

  • Abraham, R.J., Das, D., Patra, A., 2007. Effect of TCPS on oscillations in tie-power and area frequencies in an interconnected hydrothermal power system. IET Gener. Transm. Distr., 1(4):632–639. [doi:10.1049/iet-gtd: 20060361]

    Google Scholar 

  • Acha, E., Fuerte-Esquivel, C.R., Ambríz-Pérez, H., et al., 2004. FACTS: Modelling and Simulation in Power Networks. Wiley UK.

    Google Scholar 

  • Acharya, N., Sode-Yome, A., Mithulananthan, N., 2005. Facts about flexible AC transmission systems (FACTS) controllers: practical installations and benefits. Proc. Australasian Universities Power Engineering Conf., p.533–538.

    Google Scholar 

  • Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014a. A placement method of fuzzy based unified power flow controller to enhance voltage stability margin. Proc. 16th European Conf. on Power Electronics and Applications, p.1–10. [doi:10.1109/EPE.2014.6910863]

    Google Scholar 

  • Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014b. An approach to improve active power flow capability by using dynamic unified power flow controller. Proc. IEEE Innovative Smart Grid Technologies-Asia, p.249–254. [doi:10.1109/ISGT-Asia.2014.6873798]

    Google Scholar 

  • Ahmad, S., Albatsh, F.M., Mekhilef, S., et al., 2014c. Fuzzy based controller for dynamic unified power flow controller to enhance power transfer capability. Energy Conv. Manag., 79:652–665. [doi:10.1016/j.enconman. 2013.12.042]

    Google Scholar 

  • Ahmad, S., Mekhilef, S., Albatsh, F.M., 2014d. Voltage stability improvement by placing unified power flow controller (UPFC) at suitable location in power system network. Proc. Saudi Arabia Smart Grid Conf., p.1–8.

    Google Scholar 

  • Ajami, A., Armaghan, M., 2013) A comparative study in power oscillation damping by STATCOM and SSSC based on the multiobjective PSO algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 213–224. [doi:10.3906/elk-1106-5]

    Google Scholar 

  • Alabduljabbar, A.A., Milanovic, J.V., 2010. Assessment of techno-economic contribution of FACTS devices to power system operation. Electr. Power Syst. Res., 80(10): 1247–1255. [doi:10.1016/j.epsr.2010.04.008]

    Google Scholar 

  • Albatsh, F., 2009. Multirate Ripple-Free Deadbeat Control. MS Thesis, Department of Electrical Engineering, Islamic University of Gaza Gaza, Palestine.

    Google Scholar 

  • Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2014. D-Q model of fuzzy based UPFC to control power flow in transmission network. Proc. 7th IET Int. Conf. on Power Electronics, Machines and Drives, p.1–6. [doi:10.1049/ cp.2014.0397]

    Google Scholar 

  • Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015a. Dynamic power flow control for transmission lines using D-Q fuzzy based unified power flow controller. Appl. Math. Inform. Sci., 9(12):1–15.

    Google Scholar 

  • Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015b. Optimal placement of unified power flow controllers to improve dynamic voltage stability using power system variable based voltage stability indices. PLoS One, 10(4): 1–32. [doi:10.1371/journal.pone.0123802]

    Google Scholar 

  • Albatsh, F.M., Ahmad, S., Mekhilef, S., et al., 2015c. Power quality improvement in transmission network using fuzzy logic based unified power flow controller. Proc. IEEE Int. Conf. on Industrial Technology, p.1–6.

    Google Scholar 

  • Ambríz-Pérez, H., Acha, E., Fuerte-Esquivel, C.R., 2000. Advanced SVC models for Newton-Raphson load flow and Newton optimal power flow studies. IEEE Trans. Power Syst., 15(1):129–136. [doi:10.1109/59.852111]

    Google Scholar 

  • Arzani, A., Jazaeri, M., Alinejad-Beromi, Y., 2008. Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system. Proc. 43rd Int. Universities Power Engineering Conf., p.1–6. [doi:10.1109/UPEC.2008.4651434]

    Google Scholar 

  • Asare, P., Diez, T., Galli, A., et al., 1994. An Overview of Flexible AC Transmission Systems. Technical Report, Department of Electrical and Computer Engineering, Purdue University USA.

    Google Scholar 

  • Babu, A.V.N., Sivanagaraju, S., 2012. Assessment of available transfer capability for power system network with multi-line FACTS device. Int. J. Electr. Eng., 5(1):71–78.

    Google Scholar 

  • Bachmann, U., Berger, F., Reinisch, R., et al., 2002. Possibilities of multifunctional FACTS application in the European electric power system under the changing conditions of the liberalized electricity market. CIGRE Session Germany.

    Google Scholar 

  • Basu, M., 2011.Multi-objective optimal power flow with FACTS devices. Energy Conv. Manag., 52(2):903–910. [doi:10.1016/j.enconman.2010.08.017]

    Google Scholar 

  • Bhasaputra, P., Ongsakul, W., 2002) Optimal power flow with multi-type of FACTS devices by hybrid TS/SA approach. Proc. IEEE Int. Conf. on Industrial Technology, 1: 285–290. [doi:10.1109/ICIT.2002.1189908]

    Google Scholar 

  • Bollen, M.H., 1999. Understanding Power Quality Problems: Voltage Sags and Interruptions. Wiley-IEEE Press, New York USA.

    Google Scholar 

  • Bulac, C., Diaconu, C., Eremia, M., et al., 2009. Power transfer capacity enhancement using SVC. Proc. IEEE Bucharest PowerTech, p.1–5. [doi:10.1109/PTC.2009. 5281833]

    Google Scholar 

  • Burke, E., de Causmaecker, P., Berghe, G.V., 1999. A hybrid tabu search algorithm for the nurse rostering problem. Proc. 2nd Asia-Pacific Conf. on Simulated Evolution and Learning, p.187–194. [doi:10.1007/3-540-48873-1_25]

    Google Scholar 

  • Cai, H., Qu, Z., Gan, D., 2002. Determination of the power transfer capacity of a UPFC with consideration of the system and equipment constraints and of installation locations. IEE Proc.-Gener. Transm. Distr., 149(1):114–120. [doi:10.1049/ip-gtd:20020002]

    Google Scholar 

  • Cai, L.J., Erlich, I., Stamtsis, G., 2004. Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. Proc. IEEE Power Systems Conf. and Exposition, p.201–207. [doi:10.1109/ PSCE.2004.1397562]

    Google Scholar 

  • Chansareewittaya, S., Jirapong, P., 2010. Power transfer capability enhancement with multitype FACTS controllers using particle swarm optimization. Proc. IEEE Region 10 Conf., p.42–47. [doi:10.1109/tencon. 2010.5685893]

    Google Scholar 

  • Chansareewittaya, S., Jirapong, P., 2011. Power transfer capability enhancement with optimal maximum number of FACTS controllers using evolutionary programming. Proc. 37th Annual Conf. on IEEE Industrial Electronics Society, p.4733–4738. [doi:10.1109/iecon.2011.6119996]

    Google Scholar 

  • Chansareewittaya, S., Jirapong, P., 2012. Total transfer capability enhancement with optimal number of FACTS controllers using hybrid TSSA. Proc. IEEE Southeastcon, p.1–7. [doi:10.1109/SECon.2012.6197079]

    Google Scholar 

  • Chawla, S., Garg, S., Ahuja, B., 2009. Optimal location of series-shunt FACTS device for transmission line compensation. Proc. Int. Conf. on Control, Automation, Communication and Energy Conservation, p.1–6.

    Google Scholar 

  • Chengaiah, C., Satyanarayana, R.V.S., 2012. Power flow assessment in transmission lines using Simulink model with UPFC. Proc. Int. Conf. on Computing, Electronics and Electrical Technologies, p.151–155. [doi:10.1109/ICCEET.2012.6203778]

    Google Scholar 

  • Chiang, H.D., Flueck, A.J., Shah, K.S., et al., 1995. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations. IEEE Trans. Power Syst., 10(2): 623–634. [doi:10.1109/59.387897]

    Google Scholar 

  • Chung, C.Y., Wang, K.W., Tse, C.T., et al., 2002. Powersystem stabilizer (PSS) design by probabilistic sensitivity indexes (PSIs). IEEE Trans. Power Syst., 17(3):688–693. [doi:10.1109/TPWRS.2002.800914]

    Google Scholar 

  • Del Rosso, A.D., Canizares, C.A., Dona, V.M., 2003) A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst., 18: 1487–1496.

    Google Scholar 

  • Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. Proc. 6th Int. Symp. on Micro Machine and Human Science, p.39–43.

    Google Scholar 

  • Eberhart, R.C., Shi, Y., 2001. Particle swarm optimization: developments, applications and resources. Proc. Congress on Evolutionary Computation, p.81–86. [doi:10.1109/CEC.2001.934374]

    Google Scholar 

  • El-Sadek, M.Z., Dessouky, M.M., Mahmoud, G.A., et al., 1997. Enhancement of steady-state voltage stability by static VAR compensators. Electr. Power Syst. Res., 43(3):179–185. [doi:10.1016/S0378-7796(97)01179-6]

    Google Scholar 

  • Elsayed, B.A., Hassan, M.A., Mekhilef, S., 2013. Decoupled third-order fuzzy sliding model control for cart-inverted pendulum system. Appl. Math. Inform. Sci., 7(1):193–201.

    MathSciNet  Google Scholar 

  • Esmaeili, A., Esmaeili, S., 2012 A new multiobjective optimal allocation of multitype FACTS devices for total transfer capability enhancement and improving line congestion using the harmony search algorithm. Turk. J. Electr. Eng. Comput. Sci., 21: 957–979. [doi:10.3906/ elk-1108-66]

    Google Scholar 

  • Farahmand, H., Rashidinejad, M., Mousavi, A., et al., 2012. Hybrid mutation particle swarm optimisation method for available transfer capability enhancement. Int. J. Electr. Power Energy Syst., 42(1):240–249. [doi:10.1016/j.ijepes. 2012.04.020]

    Google Scholar 

  • Fardanesh, B., 2004. Optimal utilization, sizing, and steadystate performance comparison of multiconverter VSCbased FACTS controllers. IEEE Trans. Power Deliv., 19(3):1321–1327. [doi:10.1109/TPWRD.2004.829154]

    Google Scholar 

  • Gama, C., Ängquist, L., Ingeström, G., et al., 2000. Commissioning and operative experience of TCSC for damping power oscillation in the Brazilian north-south interconnection. Proc. CIGRE Session, Paper 14–104.

    Google Scholar 

  • Ge, S.Y., Chung, T.S., 1999. Optimal active power flow incorporating power flow control needs in flexible AC transmission systems. IEEE Trans. Power Syst., 14(2): 738–744. [doi:10.1109/59.761906]

    Google Scholar 

  • Gerbex, S., Cherkaoui, R., Germond, A.J., 2001. Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst., 16(3):537–544. [doi:10.1109/59.932292]

    Google Scholar 

  • Gitizadeh, M., Kalantar, M., 2009. Optimum allocation of FACTS devices in FARS regional electric network using genetic algorithm based goal attainment. J. Zhejiang Univ.-Sci. A, 10(4):478–487. [doi:10.1631/jzus.A0820130]

    MATH  Google Scholar 

  • Goffe, W.L., Ferrier, G.D., Rogers, J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60(1–2):65–99. [doi:10.1016/0304-4076(94)90038-8]

    MATH  Google Scholar 

  • Goldberg, D.E., Holland, J.H., 1988. Genetic algorithms and machine learning. Mach. Learn., 3(2–3): 95–99. [doi:10. 1023/A:1022602019183]

    Google Scholar 

  • Grigsby, L.L., 2012. Power System Stability and Control (3rd Ed.). CRC Press USA.

    Google Scholar 

  • Grijalva, S., Sauer, P.W., 1999. Reactive power considerations in linear ATC computation. Proc. 32nd Annual Hawaii Int. Conf. on Systems Sciences, p.327–340. [doi:10.1109/HICSS.1999.772870]

    Google Scholar 

  • Gyugyi, L., Schauder, C.D., Williams, S.L., et al., 1995. The unified power flow controller: a new approach to power transmission control. IEEE Trans. Power Deliv., 10(2): 1085–1097. [doi:10.1109/61.400878]

    Google Scholar 

  • Hamoud, G., 2000. Assessment of available transfer capability of transmission systems. IEEE Trans. Power Syst., 15(1):27–32. [doi:10.1109/59.852097]

    Google Scholar 

  • Han, Y.S., Suh, I.Y., Kim, J.M., et al., 2004. Commissioning and testing of the KangJin UPFC in Korea. Proc. CIGRE Session.

    Google Scholar 

  • Handfield, R., Walton, S.V., Sroufe, R., et al., 2002. Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res., 1411:70–87. [doi:10.1016/ S0377-;2217(01)00261-2]

    MATH  Google Scholar 

  • Haque, M.H., 2004. Power flow control and voltage stability limit: regulating transformer versus UPFC. IEE Proc.-Gener. Transm. Distr., 151(3):299–304. [doi:10.1049/ipgtd: 20040379]

    Google Scholar 

  • Hashemi, Y., Kazemzadeh, R., Azizian, M.R., et al., 2012. Improving power system dynamic performance using attuned design of dual-input PSS and UPFC PSD controller. Front. Electr. Electron. Eng., 7(4):416–426. [doi:10.1007/s11460-012-0219-6]

    Google Scholar 

  • Hashmani, A.A., Wang, Y., Lie, T.T., 2001. Design and application of a nonlinear coordinated excitation and TCPS controller in power systems. Proc. American Control Conf., p.811–816. [doi:10.1109/ACC.2001. 945815]

    Google Scholar 

  • Hingorani, N.G., 1993. Flexible AC transmission. IEEE Spect., 30(4):40–45. [doi:10.1109/6.206621]

    Google Scholar 

  • Hingorani, N.G., Gyugyi, L., 1999. Understanding FACTS: Concept and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press, New York USA.

    Google Scholar 

  • Holmberg, D., Danielsson, M., Halvarsson, P., et al., 1998. The stode thyristor controlled series capacitor. Proc. CIGRE Session.

    Google Scholar 

  • Holmes, D.G., Lipo, T.A., 2003. Pulse Width Modulation for Power Converters: Principles and Practice. Wiley-IEEE Press USA.

    Google Scholar 

  • Huang, Z., Ni, Y., Shen, C., et al., 2000. Application of unified power flow controller in interconnected power systems—modeling, interface, control strategy, and case study. IEEE Trans. Power Syst., 15(2):817–824. [doi:10. 1109/59.867179]

    Google Scholar 

  • Idris, R.M., Khairuddin, A., Mustafa, M.W., 2009a. Optimal allocation of FACTS devices for ATC enhancement using bees algorithm. Int. Scholarly Sci. Res. Innov., 3(6):257–264.

    Google Scholar 

  • Idris, R.M., Kharuddin, A., Mustafa, M.W., 2009b. Optimal choice of FACTS devices for ATC enhancement using bees algorithm. Proc. Australasian Universities Power Engineering Conf., p.1–6.

    Google Scholar 

  • Idris, R.M., Khairuddin, A., Mustafa, M.W., 2010. Optimal allocation of FACTS devices in deregulated electricity market using bees algorithm. WSEAS Trans. Power Syst., 5(2):108–119.

    Google Scholar 

  • Islam, M., Mekhilef, S., Albatsh, F.M., 2014. An improved transformerless grid connected photovoltaic inverter with common mode leakage current elimination. Proc. 7th Int. Conf. on Power Electronics, Machines and Drives, p.1–6. [doi:10.1049/cp.2014.0296]

    Google Scholar 

  • Iwamoto, S., Tamura, Y., 1981. A load flow calculation method for ill-conditioned power systems. IEEE Trans. Power App. Syst., PAS- 100(4):1736–1743. [doi:10.1109/ TPAS.1981.316511]

    Google Scholar 

  • Jain, T., Singh, S.N., Srivastava, S.C., 2009. Dynamic ATC enhancement through optimal placement of FACTS controllers. Electr. Power Syst. Res., 79(11):1473–1482. [doi:10.1016/j.epsr.2009.04.019]

    Google Scholar 

  • Jiang, X., Fang, X., Chow, J.H., et al., 2008. A novel approach for modeling voltage-sourced converter-based FACTS controllers. IEEE Trans. Power Deliv., 23(4): 2591–2598. [doi:10.1109/TPWRD.2008.923535]

    Google Scholar 

  • Jovcic, D., Pillai, G.N., 2005) Analytical modeling of TCSC dynamics. IEEE Trans. Power Deliv., 20: 1097–1104.

    Google Scholar 

  • Kakimoto, N., Phongphanphanee, A., 2003) Subsynchronous resonance damping control of thyristor-controlled series capacitor. IEEE Trans. Power Deliv., 18: 1051–1059.

    Google Scholar 

  • Kannan, S., Jayaram, S., Salama, M.M.A., 2004. Real and reactive power coordination for a unified power flow controller. IEEE Trans. Power Syst., 19(3):1454–1461. [doi:10.1109/TPWRS.2004.831690]

    Google Scholar 

  • Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948.

    Google Scholar 

  • Khaburi, M.A., Haghifam, M.R., 2010. A probabilistic modeling based approach for total transfer capability enhancement using FACTS devices. Int. J. Electr. Power Energy Syst., 32(1):12–16. [doi:10.1016/j.ijepes.2009.06.015]

    Google Scholar 

  • Klir, G.J., Yuan, B., 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Vol. 4. Prentice Hall, New Jersey USA.

    Google Scholar 

  • Komoni, V., Krasniqi, I., Kabashi, G., et al., 2010. Increase power transfer capability and controlling line power flow in power system installed the FACTS. Proc. 7th Mediterranean Conf. and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, p.1–6. [doi:10.1049/cp.2010.0920]

    Google Scholar 

  • Kumar, A., Kumar, J., 2012. Comparison of UPFC and SEN transformer for ATC enhancement in restructured electricity markets. Int. J. Electr. Power Energy Syst., 41(1):96–104. [doi:10.1016/j.ijepes.2012.03.019]

    Google Scholar 

  • Kumar, A., Kumar, J., 2013. ATC determination with FACTS devices using PTDFs approach for multi-transactions in competitive electricity markets. Int. J. Electr. Power Energy Syst., 44(1):308–317. [doi:10.1016/j.ijepes.2012. 07.050]

    Google Scholar 

  • Lamoree, J., Mueller, D., Vinett, P., et al., 1994. Voltage sag analysis case studies. IEEE Trans. Ind. Appl., 30(4): 1083–1089.

    Google Scholar 

  • Leung, H.C., Chung, T.S., 2000. Optimal power flow with a versatile FACTS controller by genetic algorithm approach. Proc. 5th Int. Conf. on Adavances in Power System Control, Operation and Management, p.178–183. [doi:10.1049/cp:20000387]

    Google Scholar 

  • Li, N., Xu, Y., Chen, H., 2000. FACTS-based power flow control in interconnected power system. IEEE Trans. Power Syst., 15(1):257–262. [doi:10.1109/59.852130]

    Google Scholar 

  • Lin, H.X., 2001. Main problems of modern power quality. Power Syst. Technol., 25(10):5–12 (in Chinese).

    Google Scholar 

  • Ma, J.Z., Wu, M.L., Yang, S.B., 2009. The application of SVC for the power quality control of electric railways. Proc. Int. Conf. on Sustainable Power Generation and Supply, p.1–4. [doi:10.1109/SUPERGEN.2009.5347939]

    Google Scholar 

  • Madhusudhanarao, G., Ramarao, P.V., Kumar, T.J., 2010. Optimal location of TCSC and SVC for enhancement of ATC in a de-regulated environment using RGA. Proc. IEEE Int. Conf. on Computational Intelligence and Computing Research, p.1–6. [doi:10.1109/ICCIC.2010.5705874]

    Google Scholar 

  • Mahdavi, M., Fesanghary, M., Damangir, E., 2007. An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput., 188(2): 1567–1579. [doi:10.1016/j.amc.2006.11.033]

    MathSciNet  MATH  Google Scholar 

  • Manikandan, B., 2010. Enhancement of Available Transfer Capability with FACTS Device in the Competitive Power Market. Available from http://www.scirp.org/Journal/PaperInformation.aspx?paperID=1834.

    Google Scholar 

  • Manikandan, B.V., Raja, S.C., Venkatesh, P., 2011. Available transfer capability enhancement with FACTS devices in the deregulated electricity market. J. Electr. Eng. Technol., 6(1):14–24.

    Google Scholar 

  • Manohar, J.N., Amarnath, J., 2012. Statistical analysis of power system on enhancement of available transfer capability-applying FACTS. Int. J. Multidiscip. Sci. Eng., 3(7):33–37.

    Google Scholar 

  • Masuta, T., Yokoyama, A., 2006. ATC enhancement considering transient stability based on optimal power flow control by UPFC. Proc. Int. Conf. on Power System Technology, p.1–6. [doi:10.1109/ICPST.2006.321766]

    Google Scholar 

  • Menniti, D., Scordino, N., Sorrentino, N., 2006. A new method for SSSC optimal location to improve power system available transfer capability. Proc. IEEE PES Power Systems Conf. and Exposition, p.938–945. [doi:10. 1109/PSCE.2006.296439]

    Google Scholar 

  • Moraglio, A., di Chio, C., Poli, R., 2007. Geometric particle swarm optimisation. Proc. 10th European Conf. on Genetic Programming, p.125–136. [doi:10.1007/978-3-540-71605-1_12]

    Google Scholar 

  • Mori, H., Goto, Y., 2000. A parallel tabu search based method for determining optimal allocation of FACTS in power systems. Proc. Int. Conf. on Power System Technology, p.1077–1082. [doi:10.1109/ICPST.2000.897170]

    Google Scholar 

  • Motoki, H., Yokoyama, A., 2004. Study on optimal power flow control for ATC enhancement by UPFC and its performance evaluation. Proc. Annual Conf. of Power & Energy Society.

    Google Scholar 

  • Nagalakshmi, S., Kamaraj, N., 2012) Comparison of computational intelligence algorithms for loadability enhancement of restructured power system with FACTS devices. Swarm Evol. Comput., 5: 17–27. [doi:10.1016/j.swevo.2012.02.002]

    Google Scholar 

  • Naidoo, R., Pillay, P., 2007. A new method of voltage sag and swell detection. IEEE Trans. Power Deliv., 22(2):1056–1063. [doi:10.1109/TPWRD.2007.893185]

    Google Scholar 

  • Naidu, K., Mokhlis, H., Bakar, A.H.A., 2014) Multiobjective optimization using weighted sum artificial bee colony algorithm for load frequency control. Int. J. Electr. Power Energy Syst., 55: 657–667. [doi:10.1016/j.ijepes.2013.10.022]

    Google Scholar 

  • Naik, R.S., Vaisakh, K., Anand, K., 2010. Application of TCSC for enhancement of ATC with PTDF in power transmission system. Proc. Int. Conf. on Intelligent and Advanced Systems, p.1–6. [doi:10.1109/icias.2010.5716152]

    Google Scholar 

  • Nimje, A.A., Panigrahi, C.K., Mohanty, A.K., 2011. Enhanced power transfer capability by using SSSC. J. Mech. Eng. Res., 3(2):48–56.

    Google Scholar 

  • Noroozian, M., Petersson, N.A., Thorvaldson, B., et al., 2003. Benefits of SVC and STATCOM for electric utility application. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.1143–1150. [doi:10.1109/TDC.2003.1335111]

    Google Scholar 

  • Omoigui, M., Ojo, O., Karugaba, S., 2008. Analysis of multiterminal unified power flow controller for power transfer. Proc. 40th North American Power Symp., p.1–7. [doi:10.1109/naps.2008.5307392]

    Google Scholar 

  • Ongsakul, W., Bhasaputra, P., 2002. Optimal power flow with FACTS devices by hybrid TS/SA approach. Int. J. Electr. Power Energy Syst., 24(10):851–857. [doi:10.1016/S0142-0615(02)00006-6]

    Google Scholar 

  • Ongsakul, W., Jirapong, P., 2005. Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. Proc. IEEE Int. Symp. on Circuits and Systems, p.4175–4178. [doi:10.1109/ISCAS.2005.1465551]

    Google Scholar 

  • Ooi, B.T., Kazerani, M., Marceau, R., et al., 1997. Mid-point siting of FACTS devices in transmission lines. IEEE Trans. Power Deliv., 12(4):1717–1722. [doi:10.1109/61.634196]

    Google Scholar 

  • Oskoui, A., Mathew, B., Hasler, J., et al., 2006. Holly STATCOM-FACTS to replace critical generation, operational experience. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.1393–1398. [doi:10.1109/TDC.2006.1668723]

    Google Scholar 

  • Ou, Y., Singh, C., 2002. Assessment of available transfer capability and margins. IEEE Trans. Power Syst., 17(2):463–468. [doi:10.1109/TPWRS.2002.1007919]

    Google Scholar 

  • Padiyar, K.R., 2007. FACTS Controllers in Power Transmission and Distribution. Motilal UK Books of India, India.

    Google Scholar 

  • Panda, S., Padhy, N.P., 2008. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput., 8(4):1418–1427. [doi:10.1016/j.asoc.2007.10.009]

    Google Scholar 

  • Pandey, R.K., Chaitanya, D.V.S.B., 2012. An effective approach for ATC enhancement with FACTS device—a case study. Proc. Int. Conf. on Advances in Power Conversion and Energy Technologies, p.1–6. [doi:10.1109/apcet.2012.6301989]

    Google Scholar 

  • Papic, I., Zunko, P., Povh, D., et al., 1997. Basic control of unified power flow controller. IEEE Trans. Power Syst., 12(4): 1734–1739. [doi:10.1109/59.627884]

    Google Scholar 

  • Parsopoulos, K.E., Vrahatis, M.N., 2002) Particle swarm optimization method for constrained optimization problems. Intell. Technol. Theory Appl., 76: 214–220.

    Google Scholar 

  • Partovi, F.Y., Burton, J., Banerjee, A., 1990. Application of analytical hierarchy process in operations management. Int. J. Oper. Prod. Manag., 10(3):5–19. [doi:10.1108/01443579010134945]

    Google Scholar 

  • Paserba, J.J., 2003. How FACTS controllers-benefit AC transmission systems. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, p.949–956. [doi:10.1109/TDC.2003.1335066]

    Google Scholar 

  • Perkins, B.K., Iravani, M.R., 1997 Dynamic modeling of a TCSC with application to SSR analysis. IEEE Trans. Power Syst., 12: 1619–1625.

    Google Scholar 

  • Pham, D., Ghanbarzadeh, A., Koc, E., et al., 2006a. The bees algorithm—a novel tool for complex optimisation problems. Proc. 2nd Virtual Int. Conf. on Intelligent Production Machines and Systems, p.454-459.

    Google Scholar 

  • Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., et al., 2006b. Optimising neural networks for identification of wood defects using the bees algorithm. Proc. IEEE Int. Conf. on Industrial Informatics, p.1346–1351. [doi:10.1109/INDIN.2006.275855]

    Google Scholar 

  • Pilotto, L.A.S., Bianco, A., Long, W.F., et al., 2003 Impact of TCSC control methodologies on subsynchronous oscillations. IEEE Trans. Power Deliv., 18: 243–252.

    Google Scholar 

  • Price, K., Storn, R.M., Lampinen, J.A., 2005. Differential Evolution: a Practical Approach to Global Optimization. Springer Germany. [doi:10.1007/3-540-31306-0]

    Google Scholar 

  • Qin, A.K., Huang, V.L., Suganthan, P.N., 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput., 13(2):398–417. [doi:10.1109/TEVC.2008.927706]

    Google Scholar 

  • Ramesh, M., Laxmi, A.J., 2012. Stabilty of power transmission capability of HVDC system using FACTS controllers. Proc. Int. Conf. on Computer Communication and Informatics, p.1–7. [doi:10.1109/iccci.2012.6158889]

    Google Scholar 

  • Ramey, D.G., Henderson, M., 2007. Overview of a special publication on transmission system application requirements for FACTS controllers. Proc. Power Engineering Society General Meeting, p.1–5.

    Google Scholar 

  • Rao, K.S., Kumar, B.K., 2011. Placement of SVC for minimizing losses and maximizing total transfer capability using particle swarm optimization. Proc. IET Conf. on Renewable Power Generation, p.1–5. [doi:10.1049/cp.2011.0161]

    Google Scholar 

  • Rashed, G.I., Sun, Y., Shaheen, H.I., 2012) Optimal location and parameter setting of TCSC for loss minimization based on differential evolution and genetic algorithm. Phys. Proced., 33: 1864–1878. [doi:10.1016/j.phpro.2012.05.296]

    Google Scholar 

  • Rashidinejad, M., Farahmand, H., Fotuhi-Firuzabad, M., et al., 2008. ATC enhancement using TCSC via artificial intelligent techniques. Electr. Power Syst. Res., 78(1): 11–20. [doi:10.1016/j.epsr.2006.12.005]

    Google Scholar 

  • Ren, H., Watts, D., Mi, Z., et al., 2009. A review of FACTS’ practical consideration and economic evaluation. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–5. [doi:10.1109/APPEEC.2009.4918115]

    Google Scholar 

  • Renz, B.A., Keri, A., Mehraban, A.S., et al., 1999. AEP unified power flow controller performance. IEEE Trans. Power Deliv., 14(4):1374–1381. [doi:10.1109/61.796231]

    Google Scholar 

  • Rewatkar, S.B., Kewte, S.G., 2009. Role of power electronics based FACTS controller SVC for mitigation of power quality problems. Proc. 2nd Int. Conf. on Emerging Trends in Engineering and Technology, p.731–735. [doi:10.1109/icetet.2009.197]

    Google Scholar 

  • Saaty, T.L., 1977. A scaling method for priorities in hierarchical structures. J. Math. Psychol., 15(3):234–281. [doi:10.1016/0022-2496(77)90033-5]

    MathSciNet  MATH  Google Scholar 

  • Sahadat, M.N., Al Masood, N., Hossain, M.S., et al., 2011. Real power transfer capability enhancement of transmission lines using SVC. Proc. Asia-Pacific Power and Energy Engineering Conf., p.1–4. [doi:10.1109/appeec.2011.5748663]

    Google Scholar 

  • Saltelli, A., Chan, K., Scott, E.M., 2000. Sensitivity Analysis. Wiley, New York USA.

    Google Scholar 

  • Sannino, A., Svensson, J., Larsson, T., 2003. Powerelectronic solutions to power quality problems. Electr. Power Syst. Res., 66(1):71–82. [doi:10.1016/S0378-7796 (03)00073-7]

    Google Scholar 

  • Sawhney, H., Jeyasurya, B., 2004. Application of unified power flow controller for available transfer capability enhancement. Electr. Power Syst. Res., 69(2-3):155–160. [doi:10.1016/j.epsr.2003.07.012]

    Google Scholar 

  • Schauder, C., Mehta, H., 1993. Vector analysis and control of advanced static VAR compensators. IEE Proc. C, 140(4):299–306. [doi:10.1049/ip-c.1993.0044]

    Google Scholar 

  • Sen, K.K., 1998. SSSC-static synchronous series compensator: theory, modeling, and application. IEEE Trans. Power Deliv., 13(1):241–246. [doi:10.1109/61.660884]

    Google Scholar 

  • Sen, K.K., Stacey, E.J., 1998. UPFC-unified power flow controller: theory, modeling, and applications. IEEE Trans. Power Deliv., 13(4):1453–1460. [doi:10.1109/61. 714629]

    Google Scholar 

  • Shakarami, M.R., Kazemi, A., 2010. Robust design of static synchronous series compensator-based stabilizer for damping inter-area oscillations using quadratic mathematical programming. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(4):296–306. [doi:10.1631/jzus.C0910428]

    Google Scholar 

  • Shirmohammadi, D., Hong, H.W., Semlyen, A., et al., 1988. A compensation-based power flow method for weakly meshed distribution and transmission networks. IEEE Trans. Power Syst., 3(2):753–762.

    Google Scholar 

  • Siemens, 2012. Discover the World of FACTS Technology. Available from www.siemens.com/energy/facts.

    Google Scholar 

  • Singh, B., Saha, R., 2008. Enhancing power transfer capacity of transmission system by a reduced magnetics based 48-pulse STATCOM controller. Proc. Joint Int. Conf. on Power System Technology and IEEE Power India Conf., p.1–8. [doi:10.1109/icpst.2008.4745288]

    Google Scholar 

  • Sood, V.K., 2004. HVDC and FACTS Controllers: Applications of Static Converters in Power Systems. Springer.

    Google Scholar 

  • Sookananta, B., Galloway, S.J., Burt, G.M., et al., 2007. Employment of power transfer distribution factor for the optimal placement of FACTS devices. Proc. Int. Power Engineering Conf., p.569–573.

    Google Scholar 

  • Spee, R., Zhu, W., 1992. Flexible AC transmission systems simulation and control. Proc. 3rd AFRICON Conf., p.65–68. [doi:10.1109/AFRCON.1992.624419]

    Google Scholar 

  • Srinu Naik, R., Vaisakh, K., Anand, K., 2010. Determination of ATC with PTDF using linear methods in presence of TCSC. Proc. 2nd Int. Conf. on Computer and Automation Engineering, p.146–151. [doi:10.1109/iccae.2010.5451495]

    Google Scholar 

  • Subcommittee, P.M., 1979) IEEE reliability test system. IEEE Trans. Power App. Syst., 6: 2047–2054.

    Google Scholar 

  • Sun, J., Czarkowski, D., Zabar, Z., 2002. Voltage flicker mitigation using PWM-based distribution STATCOM. Proc. IEEE Power Engineering Society Summer Meeting, p.616–621. [doi:10.1109/PESS.2002.1043313]

    Google Scholar 

  • Takasaki, M., 2006. Power transfer capability enhancement with UPFC under circumstances of uncertain power flow pattern. Proc. IEEE PES Transmission and Distribution Conf. and Exhibition, p.659–665. [doi:10.1109/tdc.2006.1668575]

    Google Scholar 

  • Tang, B.F., Fan, H., Wang, X.W., et al., 2010. The dynamic simulation research on application of SVC in the south Hebei power grid. Proc. China Int. Conf. on Electricity Distribution, p.1–4.

    Google Scholar 

  • Trzynadlowski, A.M., Blaabjerg, F., Pedersen, J.K., et al., 1994. Random pulse width modulation techniques for converter-fed drive systems—a review. IEEE Trans. Ind. Appl., 30(5):1166–1175. [doi:10.1109/28.315226]

    Google Scholar 

  • Tsoulos, I.G., 2008. Modifications of real code genetic algorithm for global optimization. Appl. Math. Comput., 203(2):598–607. [doi:10.1016/j.amc.2008.05.005]

    MathSciNet  MATH  Google Scholar 

  • van Laarhoven, P.J., Aarts, E.H., 1987. Simulated Annealing. Springer.

    MATH  Google Scholar 

  • Vara Prasad, J., Sai Ram, I., Jayababu, B., 2011. Genetically optimized FACTS controllers for available transfer capability enhancement. Int. J. Comput. Appl., 19(4):23–27.

    Google Scholar 

  • Vasquez-Arnez, R.L., Zanetta, L.C., 2008. A novel approach for modeling the steady-state VSC-based multiline FACTS controllers and their operational constraints. IEEE Trans. Power Deliv., 23(1):457–464. [doi:10.1109/TPWRD.2007.905564]

    Google Scholar 

  • Venkatesh, B., George, M.K., Gooi, H.B., 2004. Fuzzy OPF incorporating UPFC. IEE Proc. C, 151(5):625–629. [doi:10.1049/ip-gtd:20040611]

    Google Scholar 

  • Venter, G., Sobieszczanski-Sobieski, J., 2003. Particle swarm optimization. AIAA J., 41(8):1583–1589.

    Google Scholar 

  • Visakha, K., Thukaram, D., Jenkins, L., 2004. Application of UPFC for system security improvement under normal and network contingencies. Electr. Power Syst. Res., 70(1):46–55. [doi:10.1016/j.epsr.2003.11.011]

    Google Scholar 

  • Wang, H.F., Swift, F.J., Li, M., 1997. Analysis of thyristorcontrolled phase shifter applied in damping power system oscillations. Int. J. Electr. Power Energy Syst., 19(1):1–9. [doi:10.1016/S0142-0615(96)00020-8]

    Google Scholar 

  • Watts, D., Ren, H., 2007. FACTS: characteristics, applications and economic value: a literature review. Proc. 7th IASTED Int. Conf. on Power and Energy Systems, p.450–455.

    Google Scholar 

  • Xiong, W.Q., Zhang, Y.P., Wei, P., 2004. An improved realcode genetic algorithm. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2361–2364.

    Google Scholar 

  • Yang, H.T., Yang, P.C., Huang, C.L., 1996. Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions. IEEE Trans. Power Syst., 11(1):112–118. [doi:10.1109/59.485992]

    Google Scholar 

  • Yousefi-Talouki, A., Gholamian, S.A., Hosseini, M., et al., 2010. Optimal power flow with unified power flow controller using artificial bee colony algorithm. Int. Rev. Electr. Eng., 5(6):2773–2782.

    Google Scholar 

  • Yuryevich, J., Wong, K.P., 1999. Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power Syst., 14(4):1245–1250. [doi:10.1109/59.801880]

    Google Scholar 

  • Zhang, X.P., Handschin, E.J., 2001. Advanced implementation of UPFC in a nonlinear interior-point OPF. IEE Proc. C, 148(5):489–496. [doi:10.1049/ip-gtd:20010476]

    Google Scholar 

  • Zhang, X.P., Handschin, E., Yao, M., 2004. Multi-control functional static synchronous compensator (STATCOM) in power system steady-state operations. Electr. Power Syst. Res., 72(3):269–278. [doi:10.1016/j.epsr.2004.04. 011]

    Google Scholar 

  • Zhang, X.P., Rehtanz, C., Pal, B., 2012. Flexible AC Transmission Systems: Modelling and Control. Springer.

    Google Scholar 

  • Zhang, Y.K., Zhang, Y., 2006. A novel power injection model of embedded SSSC with multi-control modes for power flow analysis inclusive of practical constraints. Electr. Power Syst. Res., 76(5):374–381. [doi:10.1016/j.epsr.2005.06.008]

    Google Scholar 

  • Zheng, J.G., Wang, X., 2011. Diversity composite differential evolution algorithm for constrained optimization problems. Comput. Integ. Manuf. Syst., 17(11):2447–2456.

    Google Scholar 

  • Zheng, Z., Yang, G., Geng, H., 2013. Coordinated control of a doubly-fed induction generator-based wind farm and a static synchronous compensator for low voltage ridethrough grid code compliance during asymmetrical grid faults. Energies, 6(9):4660–4681. [doi:10.3390/en6094660]

    Google Scholar 

  • Zhong, W.L., Wang, H.S., Zhang, J., et al., 2008. Novel particle swarm optimization with heuristic mutation. Comput. Eng. Des., 29(13):3402–3406 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Mekhilef.

Additional information

Project supported by the Ministry of Higher Education of Malaysia and University of Malaya under the E-Science Fund Research Grant (No. SF005-2013) and the UMRG Project RP015D-13AET

ORCID: Fadi M. ALBATSH, http://orcid.org/0000-0002-2999-9458

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albatsh, F.M., Mekhilef, S., Ahmad, S. et al. Enhancing power transfer capability through flexible AC transmission system devices: a review. Frontiers Inf Technol Electronic Eng 16, 658–678 (2015). https://doi.org/10.1631/FITEE.1500019

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500019

Keywords

Document code

CLC number

Navigation