Skip to main content
Log in

Speech emotion recognition with unsupervised feature learning

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

Emotion-based features are critical for achieving high performance in a speech emotion recognition (SER) system. In general, it is difficult to develop these features due to the ambiguity of the ground-truth. In this paper, we apply several unsupervised feature learning algorithms (including K-means clustering, the sparse auto-encoder, and sparse restricted Boltzmann machines), which have promise for learning task-related features by using unlabeled data, to speech emotion recognition. We then evaluate the performance of the proposed approach and present a detailed analysis of the effect of two important factors in the model setup, the content window size and the number of hidden layer nodes. Experimental results show that larger content windows and more hidden nodes contribute to higher performance. We also show that the two-layer network cannot explicitly improve performance compared to a single-layer network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Hamid, O., Mohamed, A.R., Jiang, H., et al., 2012. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.4277–4280. [doi:10.1109/ICASSP.2012.6288864]

    Google Scholar 

  • Burkhardt, F., Paeschke, A., Rolfes, M., et al., 2005. A database of German emotional speech. Interspeech, p.1517–1520.

    Google Scholar 

  • Chan, T.H., Jia, K., Gao, S., et al., 2014. PCANet: a simple deep learning baseline for image classification? arXiv preprint, arXiv:1404.3606.

    Google Scholar 

  • Coates, A., Ng, A.Y., Lee, H., 2011. An analysis of singlelayer networks in unsupervised feature learning. Int. Conf. on Artificial Intelligence and Statistics, p.215–223.

    Google Scholar 

  • Dahl, G.E., Yu, D., Deng, L., et al., 2012. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process., 20(1):30–42. [doi:10.1109/TASL.2011.2134090]

    Article  Google Scholar 

  • El Ayadi, M., Kamel, M.S., Karray, F., 2011. Survey on speech emotion recognition: features, classification schemes, and databases. Patt. Recogn., 44(3):572–587. [doi:10.1016/j.patcog.2010.09.020]

    Article  MATH  Google Scholar 

  • Feraru, M., Zbancioc, M., 2013. Speech emotion recognition for SROL database using weighted KNN algorithm. Int. Conf. on Electronics, Computers and Artificial Intelligence, p.1–4. [doi:10.1109/ECAI.2013.6636198]

    Google Scholar 

  • Gao, H., Chen, S.G., An, P., et al., 2012. Emotion recognition of Mandarin speech for different speech corpora based on nonlinear features. IEEE 11th Int. Conf. on Signal Processing, p.567–570. [doi:10.1109/ICoSP.2012.6491552]

    Google Scholar 

  • Gunes, H., Schuller, B., 2013. Categorical and dimensional affect analysis in continuous input: current trends and future directions. Image Vis. Comput., 31(2):120–136. [doi:10.1016/j.imavis.2012.06.016]

    Article  Google Scholar 

  • Haq, S., Jackson, P.J., 2009. Speaker-dependent audiovisual emotion recognition. Auditory-Visual Speech Processing, p.53–58.

    Google Scholar 

  • Hinton, G., Deng, L., Yu, D., et al., 2012. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag., 29(6):82–97. [doi:10.1109/MSP.2012.2205597]

    Article  Google Scholar 

  • Kim, Y., Lee, H., Provost, E.M., 2013. Deep learning for robust feature generation in audiovisual emotion recognition. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.3687–3691. [doi:10.1109/ICASSP.2013.6638346]

    Google Scholar 

  • Koolagudi, S.G., Devliyal, S., Barthwal, A., et al., 2012. Emotion recognition from semi natural speech using artificial neural networks and excitation source features. In: Contemporary Computing. Springer Berlin Heidelberg, p.273–282.

    Chapter  Google Scholar 

  • Le, D., Provost, E.M., 2013. Emotion recognition from spontaneous speech using hidden Markov models with deep belief networks. IEEE Workshop on Automatic Speech Recognition and Understanding, p.216–221. [doi:10.1109/ASRU.2013.6707732]

    Google Scholar 

  • Lee, H., Pham, P., Largman, Y., et al., 2009. Unsupervised feature learning for audio classification using convolutional deep belief networks. Advances in Neural Information Processing Systems, p.1096–1104.

    Google Scholar 

  • Li, L., Zhao, Y., Jiang, D., et al., 2013. Hybrid deep neural network–hidden Markov model (DNN-HMM) based speech emotion recognition. Humaine Association Conf. on Affective Computing and Intelligent Interaction, p.312–317. [doi:10.1109/ACII.2013.58]

    Google Scholar 

  • Mao, Q., Wang, X., Zhan, Y., 2010. Speech emotion recognition method based on improved decision tree and layered feature selection. Int. J. Human. Robot., 7(2):245–261. [doi:10.1142/S0219843610002088]

    Article  Google Scholar 

  • Mao, Q.R., Zhao, X.L., Huang, Z.W., et al., 2013. Speakerindependent speech emotion recognition by fusion of functional and accompanying paralanguage features. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(7):573–582. [doi:10.1631/jzus.CIDE1310]

    Article  Google Scholar 

  • Martin, O., Kotsia, I., Macq, B., et al., 2006. The eNTERFACE’ 05 audio-visual emotion database. Proc. Int. Conf. on Data Engineering Workshops, p.8. [doi:10.1109/ICDEW.2006.145]

    Google Scholar 

  • Mencattini, A., Martinelli, E., Costantini, G., et al., 2014. Speech emotion recognition using amplitude modulation parameters and a combined feature selection procedure. Knowl.-Based Syst., 63:68–81. [doi:10.1016/j.knosys.2014.03.019]

    Article  Google Scholar 

  • Mohamed, A.R., Dahl, G.E., Hinton, G., 2012. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20(1):14–22. [doi:10.1109/TASL.2011.2109382]

    Article  Google Scholar 

  • Nicolaou, M.A., Gunes, H., Pantic, M., 2011. Continuous prediction of spontaneous affect from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput., 2(2):92–105. [doi:10.1109/TAFFC.2011.9]

    Article  Google Scholar 

  • Pantic, M., Nijholt, A., Pentland, A., et al., 2008. Humancentred intelligent human? Computer interaction (HCI2): how far are we from attaining it? Int. J. Auton. Adapt. Commun. Syst., 1(2):168–187. [doi:10.1504/IJAACS.2008.019799]

    Google Scholar 

  • Ramakrishnan, S., El Emary, I.M., 2013. Speech emotion recognition approaches in human computer interaction. Telecommun. Syst., 52(3):1467–1478. [doi:10.1007/s11235-011-9624-z]

    Article  Google Scholar 

  • Ranzato, M., Huang, F.J., Boureau, Y.L., et al., 2007. Unsupervised learning of invariant feature hierarchies with applications to object recognition. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2007.383157]

    Google Scholar 

  • Razavian, A.S., Azizpour, H., Sullivan, J., et al., 2014. CNN features off-the-shelf: an astounding baseline for recognition. arXiv preprint, arXiv:1403.6382.

    Google Scholar 

  • Schmidt, E.M., Kim, Y.E., 2011. Learning emotion-based acoustic features with deep belief networks. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, p.65–68. [doi:10.1109/ASPAA.2011.6082328]

    Google Scholar 

  • Stuhlsatz, A., Meyer, C., Eyben, F., et al., 2011. Deep neural networks for acoustic emotion recognition: raising the benchmarks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.5688–5691. [doi:10.1109/ICASSP.2011.5947651]

    Google Scholar 

  • Sun, R., Moore, E.II, 2011. Investigating glottal parameters and Teager energy operators in emotion recognition. LNCS, 6975:425–434. [doi:10.1007/978-3-642-24571-8_54]

    Google Scholar 

  • Sun, Y., Wang, X., Tang, X., 2013. Deep learning face representation from predicting 10,000 classes. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1891–1898. [doi:10.1109/CVPR.2014.244]

    Google Scholar 

  • Thapliyal, N., Amoli, G., 2012. Speech based emotion recognition with Gaussian mixture model. Int. J. Adv. Res. Comput. Eng. Technol., 1(5):65–69.

    Google Scholar 

  • Wu, C.H., Liang, W.B., 2011. Emotion recognition of affective speech based on multiple classifiers using acousticprosodic information and semantic labels. IEEE Trans. Affect. Comput., 2(1):10–21. [doi:10.1109/T-AFFC.2010.16]

    Article  MathSciNet  Google Scholar 

  • Wu, S., Falk, T.H., Chan, W.Y., 2011. Automatic speech emotion recognition using modulation spectral features. Speech Commun., 53(5):768–785. [doi:10.1016/j.specom.2010.08.013]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-rong Mao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61272211 and 61170126) and the Six Talent Peaks Foundation of Jiangsu Province, China (No. DZXX027)

ORCID: Zheng-wei HUANG, http://orcid.org/0000-0001-7788-0526; Qi-rong MAO, http://orcid.org/0000-0002-5021-9057

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Zw., Xue, Wt. & Mao, Qr. Speech emotion recognition with unsupervised feature learning. Frontiers Inf Technol Electronic Eng 16, 358–366 (2015). https://doi.org/10.1631/FITEE.1400323

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400323

Key words

Navigation