Skip to main content
Log in

Analysis and design of pulse frequency modulation dielectric barrier discharge for low power applications

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

For low power dielectric barrier discharge (DBD) used in small-size material treatment or portable devices, high-step transformer parasitic capacitance greatly influences the performance of the resonant converter as it is of the same order of magnitude as the equivalent capacitance of DBD load. In this paper, steady-state analysis of the low power DBD is presented, considering the inevitable parasitic capacitance of the high-step transformer. The rectifier-compensated first harmonic approximation (RCFHA) is applied to linearize the equivalent load circuit of DBD at low frequency and the derived expressions are accurate and convenient for the analysis and design of the power supply. Based on the proposed linear equivalent load circuit, the influence of transformer parasitic capacitance on the key parameters, including the frequency range and the applied electrode voltage, is discussed when the power is regulated with pulse frequency modulation (PFM). Also, a design procedure is presented based on the derived expressions. A prototype is constructed according to the design results and the accuracy of the design is verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, J.M., Valdés, M., Calleja, A.J., et al., 2003. High frequency testing and modeling of silent discharge ozone generators. Ozone Sci. Eng., 25(5):363–376. [doi:10.1080/01919510390481685]

    Article  Google Scholar 

  • Bonaldo, J.P., Pomilio, J.A., 2010. Control strategies for high frequency voltage source converter for ozone generation. Proc. IEEE Int. Symp. on Industrial Electronics, p.754–760. [doi:10.1109/ISIE.2010.5637402]

    Google Scholar 

  • Burany, N., Huber, L., Pejovic, P., 2008. Corona discharge surface treater without high voltage transformer. IEEE Trans. Power Electron., 23(2):993–1002. [doi:10.1109/TPEL.2007.915760]

    Article  Google Scholar 

  • Doebbelin, R., Benecke, M., Lindemann, A., 2008. Calculation of leakage inductance of core-type transformers for power electronic circuits. Proc. 13th Power Electronics and Motion Control Conf., p.1280–1286. [doi:10.1109/EPEPEMC.2008.4635445]

    Google Scholar 

  • Fang, Z., Qiu, X., Qiu, Y., et al., 2006. Dielectric barrier discharge in atmospheric air for glass-surface treatment to enhance hydrophobicity. IEEE Trans. Plasma Sci., 34(4):1216–1222. [doi:10.1109/TPS.2006.877619]

    Article  MathSciNet  Google Scholar 

  • Fu, D., Lee, F.C., Qiu, Y., et al., 2008. A novel high-power-density three-level LCC resonant converter with constant-power-factor-control for charging applications. IEEE Trans. Power Electron., 23(5):2411–2420. [doi:10.1109/TPEL.2008.2002052]

    Article  Google Scholar 

  • Gibalov, V.I., Pietsch, G.J., 2000. The development of dielectric barrier discharges in gas gaps and on surfaces. J. Phys. D Appl. Phys., 33(20):2618–2636. [doi:10.1088/0022-3727/33/20/315]

    Article  Google Scholar 

  • Gilbert, A.J., Bingham, C.M., Stone, D.A., et al., 2007. Normalized analysis and design of LCC resonant converters. IEEE Trans. Power Electron., 22(6):2386–2402. [doi:10.1109/TPEL.2007.909243]

    Article  Google Scholar 

  • Gilbert, A.J., Bingham, C.M., Stone, D.A., et al., 2008. Self-oscillating control methods for the LCC current-output resonant converter. IEEE Trans. Power Electron., 23(4):1973–1986. [doi:10.1109/TPEL.2008.925198]

    Article  Google Scholar 

  • Jidenko, N., Petit, M., Borra, J.P., 2006. Electrical characterization of micro-discharges produced by dielectric barrier discharge in dry air at atmospheric pressure. J. Phys. D Appl. Phys., 39(2):281–293. [doi:10.1088/0022-3727/39/2/008]

    Article  Google Scholar 

  • Kinnares, V., Hothongkham, P., 2010. Circuit analysis and modeling of a phase-shifted pulse-width modulation full-bridge-inverter-fed ozone generator with constant applied electrode voltage. IEEE Trans. Power Electron., 25(7):1739–1752. [doi:10.1109/TPEL.2010.2042075]

    Article  Google Scholar 

  • Kostov, K.G., Nishime, T.M.C., Hein, L.R.O., et al., 2013. Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies. Surf. Coat. Technol., 234:60–66. [doi:10.1016/j.surfcoat.2012.09.041]

    Article  Google Scholar 

  • Liu, Y., He, X., 2005. PDM and PFM hybrid control of a series-resonant inverter for corona surface treatment. IEE Proc.-Electr. Power Appl., 152(6):1445–1450. [doi:10.1049/ip-epa:20045270]

    Article  Google Scholar 

  • Martin-Ramos, J.A., Pernia, A.M., Diaz, J., et al., 2008. Power supply for a high-voltage application. IEEE Trans. Power Electron., 23(4):1608–1619. [doi:10.1109/TPEL.2008.925153]

    Article  Google Scholar 

  • Shafiei, N., Pahlevaninezhad, M., Farzanehfard, H., et al., 2011. Analysis and implementation of a fixed-frequency LCLC resonant converter with capacitive output filter. IEEE Trans. Ind. Electron., 58(10):4773–4782. [doi:10.1109/TIE.2011.2116758]

    Article  Google Scholar 

  • Shafiei, N., Pahlevaninezhad, M., Farzanehfard, H., et al., 2013. Analysis of a fifth-order resonant converter for high-voltage DC power supplies. IEEE Trans. Power Electron., 28(1):85–100. [doi:10.1109/TPEL.2012.2200301]

    Article  Google Scholar 

  • Wagner, H.E., Brandenburg, R., Kozlov, K.V., et al., 2003. The barrier discharge: basic properties and applications to surface treatment. Vacuum, 71(3):417–436. [doi:10.1016/S0042-207X(02)00765-0]

    Article  Google Scholar 

  • Wang, C., He, X., 2006. Preparation of hydrophobic coating on glass surface by dielectric barrier discharge using a 16 kHz power supply. Appl. Surf. Sci., 252(23):8348–8351. [doi:10.1016/j.apsusc.2005.11.042]

    Article  Google Scholar 

  • Wang, H., Fang, Z., Qiu, Y., et al., 2005. On the changing of equivalent capacitance in dielectric barrier discharge. Insul. Mater., 38(1):37–40. [doi:10.3969/j.issn.1009-9239.2005. 01.012] (in Chinese).

    Google Scholar 

  • Wedaa, H., Abdel-Salam, M., Ahmed, A., et al., 2011. NO removal using dielectric barrier discharges in a multirod reactor stressed by AC and pulsed high voltages. IEEE Trans. Dielectr. Electr. Insul., 18(5):1743–1751. [doi:10.1109/TDEI.2011.6032846]

    Article  Google Scholar 

  • Williamson, J.M., Trump, D.D., Bletzinger, P., et al., 2006. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J. Phys. D Appl. Phys., 39(20):4400–4406. [doi:10.1088/0022-3727/39/20/016]

    Article  Google Scholar 

  • Youssef, M.Z., Jain, P.K., 2007. Series-parallel resonant converter in self-sustained oscillation mode with the high-frequency transformer-leakage-inductance effect: analysis, modeling, and design. IEEE Trans. Ind. Electron., 54(3):1329–1341. [doi:10.1109/TIE.2007.892742]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-ning He.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51107115) and the China Postdoctoral Science Foundation (No. 20110491766)

ORCID: Tang-tang GUO, http://orcid.org/0000-0002-9603-0997

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Tt., Liu, Xl., Hao, Sq. et al. Analysis and design of pulse frequency modulation dielectric barrier discharge for low power applications. Frontiers Inf Technol Electronic Eng 16, 249–258 (2015). https://doi.org/10.1631/FITEE.1400185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1400185

Key words

CLC number

Navigation