Skip to main content
Log in

GFFD: Generalized free-form deformation with scalar fields

  • Electronics & Information Technology
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The novel free-from deformation (FFD) technique presented in the paper uses scalar fields defined by skeletons with arbitrary topology. The technique embeds objects into the scalar field by assigning a field value to each point of the objects. When the space of the skeleton is changed, the distribution of the scalar field changes accordingly, which implicitly defines a deformation of the space. The generality of skeletons assures that the technique can freely define deformable regions to produce a broader range of shape deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barr, A., 1984, Global and local deformation of solid primitives.Proceedings of SIGGRAPH' 84,Computer Graphics,18(3): 21–30.

    Article  MathSciNet  Google Scholar 

  • Blinn, J., 1982. A generalization of algebraic surface drawing.ACM Trans. Graphics,1(3): 135–256.

    Article  Google Scholar 

  • Borrel, P. and Bechmann, D., 1991. Deformation of N-dimensional objects.International Journal of Computational Geometry & Applications,1: 427–453.

    Article  MATH  Google Scholar 

  • Cohen-Or, D., Levin, D. and Solomovici, A., 1998. Three-dimensional distance field metamorphosis.ACM Transactions on Graphics,17(2): 116–141.

    Article  Google Scholar 

  • Coquillart, S., 1991. Extend free-form deformation: A sculpturing tool for 3D geometric models.Proceedings of SIGGRAPH' 91,Computer Graphics,25(4): 21–26.

    Google Scholar 

  • Eck, M., Derose, T., Duchamp, T., Hoppe, H., Lounsbery, M. and Stuetzle, W., 1995. Multiresolution Analysis of Arbitrary Meshes. Proceedings SIGGRAPH' 95, ACM Press, New York, p. 173–182.

    Google Scholar 

  • Fang, X., Bao, H., Heng, P. A., Wang, T. T. and Peng, Q. S., 2001. Continuous field-based free-form surface modeling and morphing.Computer & Graphics,25 (2): 235–243.

    Article  Google Scholar 

  • Griessmair, J. and Purgathoter, W., 1989. Deformation of Solids with Trivariate B-Splines. Eurographics' 89, North-Holland, p. 137–148.

  • Hoppe, H., 1996. Progressive Meshes. Proceedings of SIGGRAPH' 96, Annual Conference Series, ACM Press, New York, p. 99–108.

    Google Scholar 

  • Hsu, W., Hughes, J. and Kaufmann, H., 1992. Direct manipulation of free-form deformations.Computer Graphics,26: 177–184.

    Article  Google Scholar 

  • Kobbelt, L., Campagna, S., Vorsatz, J. and Seidel, H. P., 1998. Interactive Multi-Resolution Modeling on Arbitrary Meshes. Proceedings of SIGGRAPH' 98. ACM Press, New York, p. 105–114.

    MATH  Google Scholar 

  • Lamousin, H. J. and Waggenspack, W. N., 1994. NURBS-based free-form deformation.IEEE Computer Graphics and Applications,14(6): 59–65.

    Article  Google Scholar 

  • Lazarus, F., Coquillart, S. and Jancene, P., 1994. Axial deformations: an intuitive deformation technique.Computer-Aided Design,26(8): 607–613.

    Article  MATH  Google Scholar 

  • Lee, A., Sweldens, W., Schröder, P., Cowsar, L. and Dodkin, D., 1998. MAPS: Multiresolution Adaptive Parameterization of Surfaces. Proceedings of SIGGRAPH'98, ACM Press, New York, p. 95–104.

    Google Scholar 

  • MacCracken, R. and Joy, K. I., 1996. Free-Form Deformation with Lattices of Arbitrary Topology. Proceedings of SIGGRAPH'96, ACM Press, New York, p. 181–188.

    Google Scholar 

  • Nishimura, H., Hirai, M., Kawai, T., Kawata, T., Shirakawa, I. and Omura, K., 1985. Object modeling by distribution function and a method of image generation.Transactions of the Institute of Electronics and Communication Engineers of Japan,J68-D(4): 718–725.

    Google Scholar 

  • Sederberg, T. W. and Parry, S., 1986. Free-form deformation of solid geometric models.Proceedings of SIGGRAPH'86,Computer Graphics,20(4): 151–160.

    Article  Google Scholar 

  • Singh, K. and Fiume, E., 1998. Wires: A Geometric Deformation Technique. Proceedings of SIGGRAPH' 98, ACM Press, New York, p. 405–414.

    Google Scholar 

  • Turk, G. and O'Brien, J., 1999. Shape Transformation Using Variational Implicit Functions. Proceedings of SIGGRAPH'99, ACM Press, New York, p. 335–342.

    Google Scholar 

  • Wyvill, G., McPheeters, C. and Wyvill, B., 1986. Data structure for soft objects.The Visual Computer,2(4): 227–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Xu-jia.

Additional information

Projects supported by the National Natural Science Foundation of China (Nos. 60133020, 60021201) and by the National Grand Fundamental Research 973 (No. 2002CB312104) and the key Project of Education Ministry of China (No. 01094)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu-jia, Q., Wei, H., Xiang, F. et al. GFFD: Generalized free-form deformation with scalar fields. J. Zheijang Univ.-Sci. 4, 623–629 (2003). https://doi.org/10.1631/BF02851601

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02851601

Key words

Document code

CLC number

Navigation