Skip to main content
Log in

A meshfree method and its applications to elasto-plastic problems

  • Civil Engineering
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis. This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SG1 Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Belytschko, T., Flanagan, D.P., Kennedy, J.M., 1982. Finite element methods with user-controlled meshes for fluid-structure interaction.Comput. Methods Appl. Mech. Engrg.,33: 669–688.

    Article  MATH  Google Scholar 

  • Belytschko, T., Lu, Y.Y., Gu, L., 1994. Element-free galerkin methods.Int. J. Numer. Methods Eng.,37: 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill, J.U., 1986. A method for adaptive zoned, particle-in-cell calculation of fluid flows in two dimensions.J. Comput. Phys.,65: 314–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, J.S., Pan, C., Wu, C.T., Liu, W.K., 1996. Reproducing kernel particle methods for large deformation analysis of non-linear structuress.Comput. Methods Appl. Mech. Engrg.,139: 195–227.

    Article  MathSciNet  Google Scholar 

  • Chen, J.S., Pan, C., Wu, C.T., 1997. Large deformation analysis of rubber based on a reproducing kernel particle method.Comp. Mech.,19: 211–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Donea, J., 1983. Arbitrary Lagrangian-Eulerian Finite Element Methods.In: Belytschko, T., Hughes, T. (Eds.), Computational Methods for Transient Analysis. Elsevier, Amsterdam, p. 474–515.

    Google Scholar 

  • Drucker, D.C., Prager, W., 1952. Soil mechanics and plastic analysis or limit design.Q. Appl. Math.,10: 157–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Fries, T., Matthies, H.G., 2003. Classification and Overview of Meshfree Methods. Report of Technical University Braunschweig.

  • Harlow, F.H., 1964. Particle-in-cell computing method for fluid dynamics.Methods for Comput. Phys.,3: 319–343.

    Google Scholar 

  • Hirt, C.W., Amsden, A.A., Cook, J.L., 1974. An arbitrary Lagrangian-Eulerian computing method for all flow speeds.J. Comput. Phys.,14: 227–253.

    Article  MATH  Google Scholar 

  • Hughes, T.J.R., Liu, W.K., Zimmermann, T.K., 1981. Lagrangian-Eulerian finite element formulation for incompressible viscous flows.Comput. Methods Appl. Mech. Engrg.,29: 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W.K., Jun, S., Li, S., Adee, J., Belytschko, T., 1995. Reproducing kernel particle methods for structural dynamics.Int. J. Numer. Methods Eng.,38: 1655–1679.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W.K., Li, S., Belytschko, T., 1997. Moving least square reproducing kernel methods: (I) methodology and convergence.Comput. Methods Appl. Mech. Engrg.,143: 113–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Y.Y., Belytschko, T., Gu, L., 1994. A new implementation of the element free Galerkin method.Comp. Methods Appl. Mech. Eng.,113: 397–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy, L.B., 1977. A numerical approach to the testing of the fission hypothesis.The Astronomical Journal,82(12): 1013–1024.

    Article  Google Scholar 

  • Monaghan, J.J., 1982. Why particle methods work.SIAM J. Sci.-Stat. Compt.,3(4): 422–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Nayroles, B., Touzot, G., Villon, P., 1992. Generalizing the finite element method: diffuse approximation and diffuse elements.Comp. Mech.,10: 307–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, D.R.J., Hinton, E., 1980. Finite Elements in Plasticity: Theory and Practice. Pineridge, Swansea, p. 215–237.

    MATH  Google Scholar 

  • Rudnicki, J.W., 1977. The inception of faulting in a rock mass with a weakened zone.J. Geophys. Res.,82:844–854.

    Article  Google Scholar 

  • Rudnicki, J.W., Rice, J.R., 1975. Conditions for the localization of deformation in pressure-sensitives dilatant materials.J. Mech. Phys. Solids,23: 371–394.

    Article  Google Scholar 

  • Sulsky, D., Chen, Z., Schreyer, H.L., 1994. A particle method for history-dependent materials.Comput. Methods Appl. Mech. Engrg.,118: 179–196.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji-fa, Z., Wen-pu, Z. & Yao, Z. A meshfree method and its applications to elasto-plastic problems. J. Zheijang Univ.-Sci. A 6, 148–154 (2005). https://doi.org/10.1631/BF02847979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02847979

Key words

Document code

CLC number

Navigation