Skip to main content
Log in

Simulating the dynamics of fluid-cylinder interactions

  • Electronic & Mechanical Engineering
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We present the simulation of the dynamics of fluid-cylinder interactions in a narrow three-dimensional channel filled with a Newtonian fluid, using a Lagrange multiplier based fictitious domain methodology combined with a finite element method and an operator splitting technique. As expected, a settling truncated cylinder turns its broadside perpendicular to the main stream direction and the center of mass moves to the central axis of the channel. In the case of two truncated cylinders, they first move around each other for a while and then stay together in a "T" shape. After the "T" shape has been formed for a long enough time, we found no vortex shedding behind the cylinders. When simulating the fluidization of 60 truncated cylinders, we captured the features of interactions among fluidized cylinders as observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adams, J., Swarztrauber, P., Sweet, R., 1980. FISHPAK: A Package of Fortran Subprograms for the Solution of Separable Elliptic Partial Differential Equations. The National Center for Atmospheric Research, Boulder, CO.

    Google Scholar 

  • Baaijens, F.P.T., 2001. A fictitious domain/mortar element method for fluid structure interaction.Int J Numer Meth Fluids,35:743–761.

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A.J., Hughes, T.J.R., Marsden, J.E., McCracken, M., 1978. Product formulas and numerical algorithms.Comm Pure Appl Math,31:205–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Chou, J.C.K., 1992. Quaternion kinematic and dynamic differential equations.IEEE Transaction on Robotics and Automation,8:53–64.

    Article  Google Scholar 

  • Dean, E.J., Glowinski, R., 1997. A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow.C R Acad Sc Paris,325(Série 1):783–791.

    Article  MathSciNet  MATH  Google Scholar 

  • Dean, E.J., Glowinski, R., Pan, T.W., 1998. A Wave Equation Approach to the Numerical Simulation of Incompressible Viscous Fluid Flow Modeled by the Navier-Stokes Equations.In: De Santo, J.A. (Ed.), Mathematical and Numerical Aspects of Wave Propagation. SIAM, Philadelphia, p.65–74.

    Google Scholar 

  • Diaz-Goano, C., Minev, P.D., Nandakumar, K., 2003. A fictitious domain/finite element method for particulate flows.J Comp Phy,192:105–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Dong, S., Liu, D., Maxey, M., Karniadakis, G.E., 2004. Spectral distributed multiplier (DLM) method: Algorithm and benchmark test.J Comp Phys,195:695–717.

    Article  MATH  Google Scholar 

  • Glowinski, R., 2003. Finite Element Methods for the Numerical Simulation of Unsteady Incompressible Viscous Flow Modeled by the Navier-Stokes Equations.In: Ciarlet, P.G., Lions, J.L. (Eds.), Handbook of Numerical Analysis, Vol. IX. North-Holland, Amsterdam, p.1–1176.

    Google Scholar 

  • Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Périaux, J., 1998a. A Fictitious Domain Method with Distributed Lagrange Multipliers for the Numerical Simulation of Particulate Flow.In: Mandel, J., Farhat, C., Cai, X.C. (Eds.), Domain Decomposition Methods 10. American Mathematical Society, Providence, p.121–137.

    Chapter  MATH  Google Scholar 

  • Glowinski, R., Pan, T.W., Péeriaux, J., 1998b. Distributed Lagrange multiplier methods for incompressible flow around moving rigid bodies.Comput Methods Appl Mech Engrg,151:181–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., 1999a. A distributed Lagrange multiplier/fictitious domain method for flows around moving rigid bodies: Application to particulate flows.Int J Multiphase Flow,25:755–794.

    Article  MathSciNet  MATH  Google Scholar 

  • Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Périaux, J., 1999b. A distributed Lagrange multiplier/fictitious domain method for flow around moving rigid bodies: Application to particulate flow.Int J Num Meth in Fluids,30:1043–1066.

    Article  MATH  Google Scholar 

  • Glowinski, R., Pan, T.W., Hesla, T., Joseph, D.D., Périaux, J., 2001. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow.J Comput Phys,169:363–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofler, K., Muller, M., Schwarzer, S., Wachman, B., 1998. Interacting Particle-Liquid Systems.In: Krause, E., Jager, W. (Eds.), High Performance Computing in Science and Engineering. Springer-Verlag, Berlin, p. 54–64.

    Google Scholar 

  • Hu, H.H., 1996. Direct simulation of flows of solid-liquid mixtures.Int J Multiphase Flow,22:335–352.

    Article  MATH  Google Scholar 

  • Hu, H.H., Joseph, D.D., Crochet, M.J., 1992. Direct simulation of fluid particle motions.Theoret Comput Fluid Dynamics,3:285–306.

    Article  MATH  Google Scholar 

  • Joseph, D.D., 1992. Finite Size Effects in Fluidized Suspension Experiments.In: Roco, M.C. (Ed.), Particulate Two-Phase Flow. Butterworth-Heinemann, Boston, p. 300–324.

    Google Scholar 

  • Johnson, A., Tezduyar, T., 1997. 3-D simulation of fluid-rigid body interactions with the number of rigid bodies reaching 100.Comp Meth Appl Mech Eng,145:301–321.

    Article  MATH  Google Scholar 

  • Juárez, L.H., Glowinski, R., Pan, T.W., 2002. Numerical simulation of the sedimentation of rigid bodies in an incompressible viscous fluid by Lagrange multiplier/fictitious domain methods combined with the Tay-lor-Hood finite element approximation.J Scientific Computing,17:683–694.

    Article  MathSciNet  MATH  Google Scholar 

  • Ladd, A.J.C., 1994a. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 1, Theoretical foundation.J Fluid Mech,271:285–310.

    Article  MathSciNet  MATH  Google Scholar 

  • Ladd, A.J.C., 1994b. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, Part 2, Numerical results.J Fluid Mech,271:311–340.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Y.J., Joseph, D.D., 1993. Sedimentation of particles in polymer solutions.J Fluid Mech,255:565–595.

    Article  Google Scholar 

  • Marchuk, G.I., 1990. Splitting and Alternating Direction Methods.In: Ciarlet, P.G., Lions, J.L. (Eds.), Handbook of Numerical Analysis, Vol. I, North-Holland, Amsterdam, p. 197–462.

    Chapter  Google Scholar 

  • Maury, B., Glowinski, R., 1997. Fluid-particle flow: a symmetric formulation.C R Acad Sc Paris,324(Série 1): 1079–1084.

    Article  MathSciNet  MATH  Google Scholar 

  • Maury, B., 1997. A many-body lubrication model.C R Acad Sc Paris,325(Série 1):1053–1058.

    Article  MathSciNet  MATH  Google Scholar 

  • Pan, T.W., Joseph, D.D., Glowinski, R., 2001. Modeling Rayleigh-Taylor instability of a sedimenting suspension of several thousand circular particles in a direct numerical simulation.J Fluid Mech.,434:23–37.

    Article  MATH  Google Scholar 

  • Pan, T.W., Joseph, D.D., Bai, R., Glowinski, R., Sarin, V., 2002. Fluidization of 1204 spheres: simulation and experiments.J Comp Phys,25:220–252.

    MATH  Google Scholar 

  • Peskin, C.S., 1981. Lectures on mathematical aspects of physiology.Lectures in Applied Math,19:69–107.

    MathSciNet  MATH  Google Scholar 

  • Peskin, C.S., McQueen, D.M., 1980. Modeling prosthetic heart valves for numerical analysis of blood flow in the heart.J Comp Phys,37:113–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Qi, D., Luo, L.S., 2003. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows.J Fluid Mech,477:201–213.

    Article  MATH  Google Scholar 

  • Takagi, S., Oguz, H.N., Zhang, Z., Prosperetti, A., 2003. PHYSALIS: A new method for particle simulation. Part II: Two-dimensional Navier-Stokes flow around cylinders.J Comput Phys,187:371–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, G.J., Moes, N., Liu, W.K., Belytschko, T., 2001. The extended finite element method for rigid particles in Stokes flow.Int J Numer Meth Engng,51:293–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, Z., Phan-Thien, N., Fan, Y., Tanner, R. I., 2002. Viscoelastic mobility problem of a system of particles.J Non-Newtonian Fluid Mech,104:87–124.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by NSF (Nos. ECS-9527123, CTS-9873236, DMS-9973318, CCR-9902035, DMS-0209066), and DOE/LASCI (No. R71700K-292-000-99), USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsorng-Whay, P., Roland, G. & Daniel D, J. Simulating the dynamics of fluid-cylinder interactions. J. Zheijang Univ.-Sci. A 6, 97–109 (2005). https://doi.org/10.1631/BF02847973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02847973

Keywords

Document code

CLC number

Navigation