Skip to main content
Log in

Studies on property of sample size and different traits for core collections based on genotypic values of cotton

  • Science & Engineering
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Studies were conducted on specific core collections constructed on the basis of different traits and sample size by the method of stepwise cluster with three sampling strategies based on genotypic values of cotton. A total 21 traits (11 agronomy traits, 5 fiber traits and 5 seed traits) were used to construct main core collections. Specific core collections, as representative of the initial collection, were constructed by agronomy, fiber or seed trait, respectively. As compared with the main core collection, specific core collections tended to have similar property for maintaining genetic diversity of agronomy, seed or fiber traits. Core collections developed by about sample size of 17% (P 2=0.17) and 24%\((\bar P_1 = 0.24)\) with three sampling strategies could be quite representative of the initial collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Brown, A. H. D., 1989. The case for core collections.In: The Use of Plant Genetic Resources. Brown, A. H. D., Frankel, O. H., Marshall, D. R. et al. (eds.), Cambridge University Press, Cambridge, p. 136–156.

    Google Scholar 

  • Chang, T. T., 1991. Guidelines on developing core collections of rice cultigens.In: Rice Gemplasm Collecting, Preservation, Use: Proceedings of third international workshop on rice germplasm. Pollard, L., (ed.), IRRI, Philippines, p. 105–107.

    Google Scholar 

  • Crossa, J., Delacy, I. H. and Taba, S., 1995. The use of multivariate methods in developing a core collection.In: Core Collections of Plant Genetic Resources. Hodgkin, T., Brown, A. H. D., Hintum, van Th. J. L., et al. (eds.), John Wiley & Sons, Chichester, UK, p. 77–92.

    Google Scholar 

  • Divaret I., Margalé, E. and Thomas, G., 1999. RAPD markers on seed bulks efficiently assess the genetic diversity of aBrassica oleracea L. collection.Theor. Appl. Genet.,98:1029–1035.

    Article  Google Scholar 

  • Diwan, N., Bauchan, G. R. and McIntosh, M. S. A., 1994. Core collection for the United States annualMedicago germplasm collection.Crop. Sci.,34: 279–285.

    Article  Google Scholar 

  • Diwan, N., McIntosh, M. S. and Bauchan, G. R., 1995. Methods of developing a core collection of annualMedicago species.Theor. Appl. Genet.,90: 755–761.

    Article  Google Scholar 

  • Hokanson, S. C., Szewe-McFadden, A. K., Lamboy, W. F., et al., 1998. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in aMalux × domestica borkh. core subset collection.Theor. Appl. Genet.,97:671–683.

    Article  Google Scholar 

  • Holbrook, C. C., Anderson, W. F. and Pittman, R. N., 1993. Selection of a core collection from the U. S. germplasm collection of peanut.Crop. Sci.,33:859–861.

    Article  Google Scholar 

  • Hu, J., 1999. Studies on Methods of Developing Core Collections by Stepwise Clusters in Crops. Ph. D. Dissertation, Zhejiang University, Hangzhou, China.

    Google Scholar 

  • Hu, J., Zhu, J. and Xu, H. M., 2000. Methods of constructing core collections by stepwise cluster with three sampling strategies based on genotypic values of crops.Theor. Appl. Genet. (in printing).

  • Mackay, M. C., 1995. One core collection or many?In: Core Collections of Plant Genetic Resources. Hodgkin, T., Brown, A. H. D., Hintum, van Th. J. L., et al. (eds.), John Wiley & Sons, Chichester, UK, p. 199–210.

    Google Scholar 

  • Mahalanobis, P. C., 1936. On the generalized distance in statistics.Proc. Natl. Inst. Sci. India,2:49–55.

    MATH  Google Scholar 

  • Ward, J. H., 1963. Hierarchical grouping to optimize an objective function.Journal of the American Statistical Association,58:236–244.

    Article  MathSciNet  Google Scholar 

  • Wheatley, C. C., Orrego, A. J. I., Sanchez, T. et al. 1993. Quality evaluation of the cassava core collection at CIAT.In: First International Scientific Meeting Cassava Biotechnology Network: proceedings. Roca, W. M. and Thro, A. M. (eds.), Cali, Colombia: CIAT, p. 255–264.

    Google Scholar 

  • Yonezawa, K., Nomura, T. and Morishima, H., 1995. Sampling strategies for use in stratified germplasm collections.In: Core Collections of Plant Genetic Resources. Hodgkin, T., Brown, A. H. D., Hintum, van Th. J. L., et al. (eds.), John Wiley & Sons, Chichester, UK, p. 35–53.

    Google Scholar 

  • Zeuli, P. L. S. and Qualset, C. O., 1993. Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat.Theor. Appl. Genet.,87:295–304.

    Article  Google Scholar 

  • Zhu, J., 1993. Methods of predicting genotype value and heterosis for offspring of hybrids.Journal of Biomath.,8:32–44.

    MATH  Google Scholar 

  • Zhu, J. and Weir, B. S., 1996. Diallel analysis of sexlinked and maternal effects.Theor. Appl. Genet.,92: 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project(No 39470377) supported by NSFC

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Jun, Z. & Hai-ming, X. Studies on property of sample size and different traits for core collections based on genotypic values of cotton. J. Zheijang Univ.-Sci. 2, 89–93 (2001). https://doi.org/10.1631/BF02841183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02841183

Key words

Document code

CLC number

Navigation