Skip to main content
Log in

Cloning and GST-fused expression inE. coli of mouse β-1,4-galactosyltransferase

  • Bioscience & Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

β-1,4-galactosyltransferase (β4Gal-T) (EC 2.4.1.38) plays a multifunctional role in many aspects of normal cell physiology. By now, several dozens of β4Gal-T genes have been cloned, separated from mouse, chick, bovine, human, etc. This paper presents the cloning and GST-fused expression of mouse β4Gal-T gene inEscherichia coli (E. coli). The target gene was cloned by PCR, followed by identification by DNA sequencing and expression inE.coli with isopropyl-β-D-thiogalactoside (IPTG) gradient concentrations, products of which were separated on SDS-PAGE showing that the target protein had the same molecular weight as that of mouse β4Gal-T. The transcriptional product of β4Gal-T gene was proved by Western hybridization analysis to be due to GST-fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akimoto, Y., Obinata, A., Endo, H., Furukawa, K., Aoki, D., Nozawa, S., Hirano, H., 1995. Immunocytochemical localization of the protein reactive to human beta-1,4-galactosyltransferase antibodies during chick embryonic skin differentiation.Anat. Rec.,243(1):109–119.

    Article  Google Scholar 

  • Almeida, R., Amado, M., David, D., Levery, S.B., Holmes, E.H., Merkx, G., van Kessel, A.G., Rygaard, E., Hassan, H., Bennett, E., Clausen, H., 1997. A Family of human β4-galactosyltransferases: cloning and expression of two novel UDP-galactose β-N-acetyl-glucosamine β-1,4-gal-actosyltransferases: β4-Gal-T2 and β4Gal-T3.J. Biol. Chem.,272(51):31979–31991.

    Article  Google Scholar 

  • Appeddu, P.A., Shur, B.D., 1994. Molecular analysis of cell surface beta-1,4-galactosyltransferase function during cell migration.Proc. Natl. Acad. Sci. U.S.A,91(6):2095–2099.

    Article  Google Scholar 

  • Asano, M., Furukawa, K., Kido, M., Matsumoto, S., Umesaki, Y., Kochibe, N., Iwakura, Y., 1997. Growth retardation and early death of β-1,4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells.EMBO J.,16(8):1850–1857.

    Article  Google Scholar 

  • Axford, J.S., 1999. Glycosylation and rheumatic disease.Biochim. Biophys. Acta.,1455(2–3):219–229.

    Article  Google Scholar 

  • Bayna, E.M., Shaper, J.H., Shur, B.D., 1988. Temprally specific involvement of cell surface β-1,4-galactosyltransferase during mouse embryo morula compaction.Cell,53:145–157.

    Article  Google Scholar 

  • Begovac, P.C., Shur, B.D., 1990. Cell surface galactosyltransferase mediates the initiation of neurite out-growth from PC 12 cells on laminin.J. Cell Biol.,110(2):461–470.

    Article  Google Scholar 

  • Eckstein, D.J., Shur, B.D., 1992. Cell surface beta-1,4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells.Exp. Cell Res.,201(1):83–90.

    Article  Google Scholar 

  • Evans, S.C., Youakim, A., Shur, B.D., 1995. Biological consequences of targeting β-1,4-galactosyltransferase to two different subcellular compartments.Bioessays,17(3):261–268.

    Article  Google Scholar 

  • Fan, Y., Yu, L., Lu, Q., Gong, R., Jiang, Y., Zhang, Q., Dai, F., Chen, C., Zhao, S., 2002. Molecular cloning, genomic organization, and mapping of β4GalT-VIb, a brain abundant member of β4-galactosyltransferase gene family, to human chromosome 18q12.1.DNA Seq. 13(1):1–8.

    Article  Google Scholar 

  • Gillespie, P.G., Hudspeth, A.J., 1991. High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins.J. Cell Biol.,112(4):625–640.

    Article  Google Scholar 

  • Hathaway, H.J., Shur, B.D., 1992. Cell surface beta-1,4-galactosyltransferase functions during neural crest cell migration and neurulationin vivo.J. Cell Biol.,117(2):369–382.

    Article  Google Scholar 

  • Hathaway, H.J., Shur, B.D., 1996. Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta-1,4-galactosyltransferase.Development,122(9):2859–2872.

    Article  Google Scholar 

  • Holm, L., Sander, C., 1983. Protein structure comparison by alignment of distance matrices.J. Mol. Biol.,233:123–138.

    Article  Google Scholar 

  • Huang, Q., Shur, B.D., Begovac, P.C., 1995. Overexpressing cell surface beta-1,4-galactosyltransferase in PC12 cells increases neurite outgrowth on laminin.J. Cell Sci.,108(Pt 2):839–847.

    Article  Google Scholar 

  • Lopez, L.C., Youakim, A., Evans, S.C., Shur, B.D., 1991. Evidence for a molecular distinction between Golgi and cell surface forms of β-1,4-galactosytransferase.J. Bio. Chem.,266(24):15984–15991.

    Article  Google Scholar 

  • Macek, M.B., Lopez, L.C., Shur, B.D., 1991. Aggregation of beta-1,4-galactosyltransferase on mouse sperm induces the acrosome reaction.Dev. Biol.,147(2):440–444.

    Article  Google Scholar 

  • Maillet, C.M., Shur, B.D., 1993. Uvomorulin, LAMP-1, and laminin are substrates for cell surface beta-1,4-galactosyltransferase on F9 embryonal carcinoma cells: comparisons between wild-type and mutant 5.51 att-cells.Exp. Cell Res.,208(1):282–295.

    Article  Google Scholar 

  • Maillet, C.M., Shur, B.D., 1994. Perturbing cell surface beta-(1,4)-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis.Cell Sci.,107 (Pt 6):1713–1724.

    Article  Google Scholar 

  • Malissard, M., Zeng, S., Berger, E.G., 2000. Expression of functional soluble forms of human β-1,4-galactosyltransferase I, α-2,6-sialyltransferase, and α-1,3-fucosyltransferase VI in the methylotrophic yeast Pichia pastoris.Biochem. Biophys. Res. Commun.,267(1):169–173.

    Article  Google Scholar 

  • Malissard, M., Berger, E.G., 2001. Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements.Eur. J. Biochem.,268(15):4352–4358.

    Article  Google Scholar 

  • Masibay, A.S., Balaji, P.V., Boeggeman, E.E., Qasba, P.K., 1993. Mutational analysis of the golgi retention signal of bovine β-1,4-galactosyltransferase.J. Bio. Chem.,268(13):9908–9916.

    Article  Google Scholar 

  • Masri, K.A., Appert, H.E., Fukuda, M.N., 1988. Identification of the full-length coding sequence of human galactosylstransferase (β-N-acetylglucosminide:β-1,4-galactosyltransferase).Biochem. Biophys. Res. Commun.,157(2):657–663.

    Article  Google Scholar 

  • McDonald, O.B., Chen, W.J., Ellis, B., Hoffman, C., Overton, L., Rink, M., Smith, A., Marshall, C.J., Wood, E.R., 1999. A scintillation proximity assay for the Raf/MEK/ERK kinase cascade: high-throughput screening and identification of selective enzyme inhibitors.Anal. Biochem.,268(2):318–329.

    Article  Google Scholar 

  • Mengle, G.L., Mccoy, H.M.F., Tiemeier, D.C., 1991. Genomic structure and expression of human beta-1,4-galactosyltransferase.Biochem. Biophys. Res. Commun.,176:1269–1276.

    Article  Google Scholar 

  • Nomura, T., Takizawa, M., Aoki, J., Arai, H., Inoue, K., Wakisaka, E., Yoshizuka, N., Imokawa, G., Dohmae, N., Takio, K., Hattori, M., Matsuo, N., 1988. Purification, cDNA cloning, and expression of the UDP-Gal: glucosylceramide β-1,4-galactosyltransferase from rat brain.J. Biol. Chem.,273(22):13570–13577.

    Article  Google Scholar 

  • Park, J.E., Lee, K.Y., Do, S.I., Lee, S.S., 2002. Expression and characterization of β-1,4-galactosyltransferase fromNeisseria meningitisdis andNeisseria gonorhoeae.J. Biochem. Mol. Biol.,35(3):330–336.

    Google Scholar 

  • Posern, G., Zheng, J., Knudsen, B.S., Kardinal, C., Muller, K.B., Voss, J., Shishido, T., Cowburn, D., Cheng, G., Wang, B., Kruh, G.D., Burrell, S.K., Jacobson, C.A., Lenz, D.M., Zamborelli, T.J., Adermann, K., Hanafusa, H., Feller, S.M., 1998. Development of highly selective SH3 binding peptides for Crk and CRKL which disrupt Crk-complexes with DOCK180, SoS and C3G.Oncogene,16(15):1903–1912.

    Article  Google Scholar 

  • Sambrook, J., Fritsh, E.F., Maniatis, T., 1989. Molecular Cloning: A Laboratory Manual, 2nd Edition. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y

    Google Scholar 

  • Shi, X., Amindari, S., Paruchuru, K., Skalla, D., Burkin, H., Shur, B.D., Miller, D.J., 2001. Cell surface beta-1,4-galactosyltransferase-I activates G protein-dependent exocytotic signaling.Development,128(5):645–654.

    Article  Google Scholar 

  • Smith, D.B., Johnson, K.S., 1988. Single-step purifycation of polypeptides expressed inEscherichia coli as fusions with glutathione S-transferase.Gene,67(1):31–40.

    Article  Google Scholar 

  • Tomiya, N., Howe, D., Aumiller, J.J., Pathak, M., Park, J., Palter, K.B., Jarvis, D.L., Betenbaugh, M.J., Lee, Y.C., 2003. Complex-type biantennary N-glycans of recombinant human transferrin fromTrichoplusia ni insect cells expressing mammalian {beta}-1,4-galactosyltransferase and {beta}-1,2-N-acetylgluco-saminyltransferase II.Glycobiology,13(1):23–34.

    Article  Google Scholar 

  • Uehara, K., 1998. Structural analysis of milk and testis β-1,4-galactosyltransferase gene products.Cell structure and function,23:43–48.

    Article  Google Scholar 

  • Vadaie, N., Hulinsky, R.S., Jarvis, D.L., 2002. Identification and characterization of aDrosophila melanogaster ortholog of human β-1,4-galactosyltransferase VII.Glycobiology,12(10):589–597.

    Article  Google Scholar 

  • Vrielink, A., Rüger, W., Driessen, H.P., Freemont, P.S., 1994. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence or in the absence of the substrate uridine diphosphoglucose.EMBO J.,13(15):3413–3422.

    Article  Google Scholar 

  • Wassler, M.J., Shur, B.D., 2000. Clustering of cell surface beta-1,4-galactosyltransferase I induces transient tyrosine phosphorylation of focal adhesion kinase and loss of stress fibers.J. Cell Sci.,113(Pt 2):237–245.

    Article  Google Scholar 

  • Wassler, M.J., Foote, C.J., Gelman, I.H., Shur, B.D., 2001. Functional interaction between the SSeCKS scaffolding protein and the cytoplasmic domain of beta-1,4-galactosyltransferase.J. Cell Sci.,114:2291–2300.

    Article  Google Scholar 

  • Yang, R.Y., Hsu, D.K., Liu, F.T., 1996. Expression of galectin-3 modulates T-cell growth and apoptosis.Proc. Natl. Acad. Sci. U.S.A.,93(13):6737–6742.

    Article  Google Scholar 

  • Youakim, A., Hathaway, H.J., Miller, D.J., Gong, X., Shur, B.D., 1994. Overexpressing sperm surface β-1,4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions.J. Cell Biol.,126(6):1573–1583.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong Xing-guo.

Additional information

Project (No. 171026) supported by Cao Guangbiao High-Tech Development Funds of Zhejiang University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing-guo, G., Wen-tao, Z. & Wen-ying, W. Cloning and GST-fused expression inE. coli of mouse β-1,4-galactosyltransferase. J. Zheijang Univ.-Sci. 5, 164–172 (2004). https://doi.org/10.1631/BF02840918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02840918

Key words

Document code

CLC number

Navigation