Skip to main content
Log in

Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

  • Energy & Environment Engineering
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid suspension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (M s of less than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle size and flow Reynolds number was derived from experimental data. In addition, thek-∈ two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transfer of the gasphase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Cen, K. F., Fan, J. R., 1992. Prospects of applying computer-aided testing (CAT) to designing and testing boilers, Proc. of the Int. Power Engineering Conf. p. 39–45.

  • Fan, J. R., Cen, K. F., 1987. Effects of turbulent fluctuation and frequency spectrum on the drag coefficient of a spherical particle in gas-solid flow. Proc. of the Int. Symp. on Multiphase Flows.

  • Farbar, L., Morley, M. J., 1957. Heat Transfer to flowing gas-solid mixtures in a circular tube.Ind. Engng. Chem.,49(7):1143–1150.

    Article  Google Scholar 

  • Gao, X., Shen, L. C., Luo, Z. Y., et al., 1996. Effect of ash particle in flue gases on heat transfer of surperheater and economizers.Power Engineering,16(5): 8–14 (in Chinese).

    Google Scholar 

  • George, S. E., Grace, J. R., 1982. Heat transfer to horizontal tubes in the freeboard region of a gas fluidized bed combustor.AIChE J.,28(5): 759–765.

    Article  Google Scholar 

  • Han, K. E., Sung, H. J., Chung, M. K., 1991. Analysis of heat transfer in a pipe carrying two-phase gas-particle suspension.Int. J. Heat Mass Transfer,31(1): 69–78.

    Google Scholar 

  • Hetsroni, G., 1989. Particles-turbulence interaction.Int. J. Multiphase Flow,15(5): 735–746.

    Article  Google Scholar 

  • Kuo, J. T. and Chiou, C. H., 1988. Momentum and heat transfer of gas-solids suspensions in vertical pipes.AIChE Symp. Ser.,84: 207–211.

    Google Scholar 

  • Kurosaki, Y., Satoh, I., Kameoka, Y., Annmo, Y., 1990. Mechanisms of heat transfer enhancement around the stagnation point of an impinging air jet laden with solid particles.Proc. of the Ninth Int. Heat Transfer Conf.,4: 99–104.

    Article  Google Scholar 

  • Michaelides, E. E., 1986. Heat transfer in particulate flows.Int. J. Heat Mass Transfer,29 (2): 265–273.

    Article  Google Scholar 

  • Murray, D. B., Fitzpatrick, J. A., 1991. Heat Transfer in a staggered tube array for a gas-solid suspension flow.Trans. ASME J. Heat Transfer,113: 865–873.

    Article  Google Scholar 

  • Murray, D. B., 1994a. Local enhancement of heat transfer in a particulate cross flow—I Heat transfer mechanisms.Int. J. Multiphase Flow,20(3): 493–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, D. B., 1994b. Local enhancement of heat transfer in a particulate cross flow—II Experimental data and predicted trends.Int. J. Multiphase Flow,20(3): 505–573.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, P. R., 1969. Pneumatic transport.J. Fluid Mech.,39:407–432.

    Article  Google Scholar 

  • Schuh, M. J., Schuler, C. A., Humphrey J. A. C., 1989. Numerical Calculation of particle-laden gas flow past tubes,AIChE J.,35(3):466–480.

    Article  Google Scholar 

  • Sun, J., Chen, M. M., 1988. A theoretical analysis of heat transfer due to particle impact.Int. J. Heat Mass Transfer,31:969–975.

    Article  Google Scholar 

  • Wilkinson, G. T., Norman, J. R., 1967. Heat transfer to a suspension of solids in a gas.Trans. Instn. Chem. Engrs.,45:314–318.

    Google Scholar 

  • Wood, R. T., Kuwata, M., Staub, F. W., 1980. Heat transfer to horizontal tube banks in the splash zone of a fluidized bed of large particles.In: Fluidization (Edited by Grace J. R. and Masten J. M.), Plenum Press, New York, p. 235–242.

    Chapter  Google Scholar 

  • Woodcock, M. T., Worley, N. G., 1966. Gas-solid suspensions as heat transfer media.Proc. of Instn. Mech. Engrs.,181: 17–33.

    Google Scholar 

  • Yoshida, H., Suenaga, K., Echigo, R., 1990. Turbulence structure and heat transfer of a two-dimensional impinging jet with gas—solid suspensions.Int. J. Heat Mass Transfer,33(5): 859–867.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by National Natural Science Foundation for Distinguished Young Scholars (No. 50025618)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin-song, Z., Zhong-yang, L., Xiang, G. et al. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow. J. Zhejiang Univ.-Sci. 3, 381–386 (2002). https://doi.org/10.1631/BF02839476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/BF02839476

Key words

Document code

CLC number

Navigation