Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 10, pp 848–860 | Cite as

Advances in the control of mechatronic suspension systems

  • Wajdi S. Aboud
  • Sallehuddin Mohamed Haris
  • Yuzita Yaacob


The suspension system is a key element in motor vehicles. Advancements in electronics and microprocessor technology have led to the realization of mechatronic suspensions. Since its introduction in some production motorcars in the 1980s, it has remained an area which sees active research and development, and this will likely continue for many years to come. With the aim of identifying current trends and future focus areas, this paper presents a review on the state-of-the-art of mechatronic suspensions. First, some commonly used classifications of mechatronic suspensions are presented. This is followed by a discussion on some of the actuating mechanisms used to provide control action. A survey is then reported on the many types of control approaches, including look-ahead preview, predictive, fuzzy logic, proportional-integral-derivative (PID), optimal, robust, adaptive, robust adaptive, and switching control. In conclusion, hydraulic actuators are most commonly used, but they impose high power requirements, limiting practical realizations of active suspensions. Electromagnetic actuators are seen to hold the promise of lower power requirements, and rigorous research and development should be conducted to make them commercially usable. Current focus on control methods that are robust to suspension parameter variations also seems to produce limited performance improvements, and future control approaches should be adaptive to the changeable driving conditions.

Key words

Mechatronics Active suspensions Semi-active suspensions Multiple model adaptive control 

CLC number

TP273 TB535 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalla, M.O., Al Shabatat, N., Al Qaisi, M., 2008. Linear matrix inequality based control of vehicle active suspension system. Veh. Syst. Dynam., 47(1):121–134.CrossRefGoogle Scholar
  2. Ab Talib, M.H., Mat Darns, I.Z., 2013. Self-tuning PID controller for active suspension system with hydraulic actuator. IEEE Symp. on Computers & Informatics, p.86-91. [doi:10.1109/ISCI.2013.6612381]Google Scholar
  3. Akbari, A., Lohmann, B., 2010. Multi-objective H /GH 2 preview control of active vehicle suspensions. Veh. Syst. Dynam., 48(12):1475–1494. [doi:10.1080/00423110903509327]CrossRefGoogle Scholar
  4. Alleyne, A., Hedrick, J.K., 1995. Nonlinear adaptive control of active suspensions. IEEE Trans. Contr. Syst. Technol., 3(1):94–101. [doi:10.1109/87.370714]CrossRefGoogle Scholar
  5. Altet, O., Moreau, X., Oustaloup, A., et al., 2003. The hydractive CRONE suspension: Operation principle and stability study. Proc. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., p.677–683.Google Scholar
  6. Appleyard, M., Wellstead, P.E., 1995. Active suspension: some background. IEE Proc.-Contr. Theory Appl., 142(2):123–128. [doi:10.1049/ip-cta:19951735]CrossRefGoogle Scholar
  7. Becker, M., Jaker, K.P., Fruhauf, F., et al., 1996. Development of an active suspension system for a Mercedes-Benz coach (o404). Proc. IEEE Int. Symp. on Computer-Aided Control System Design, p.146–151.Google Scholar
  8. BOSE, 2010. Resolving the Conflict Between Comfort and Control. Available from Google Scholar
  9. Chang, J.C., 2007. Analysis of series type and parallel type active suspension systems. Proc. Ta Hwa Institute of Technology Int. Conf., p.177–182.Google Scholar
  10. Chang, Y.C., Kuo, L.W., Wu, J.L., 2010. Reliable multi-objective decentralized controller design. Int. Conf. on System Science and Engineering, p.227–232. [doi:10.1109/ICSSE.2010.5551749]Google Scholar
  11. Changizi, N., Rouhani, M., 2011. Comparing PID and fuzzy logic control a quarter car suspension system. J. Math. Comput. Sci., 2(3):559–564.Google Scholar
  12. Chantranuwathana, S., Huei, P., 1999. Adaptive robust force control for vehicle active suspension. Proc. IEEE Int. Conf. on Control Applications, p.442–447.Google Scholar
  13. Chung, S., Shin, H., 2004. High-voltage power supply for semi-active suspension system with ER-fluid damper. IEEE Trans. Veh. Technol., 53(1):206–214. [doi:10.1109/TVT.2003.819811]MathSciNetCrossRefGoogle Scholar
  14. Codeca, F., Savaresi, S.M., Spelta, C., et al., 2008. Identification of an electro-hydraulic controllable shock absorber using black-block non-linear models. Proc. IEEE Int. Conf. on Control Applications, p.462–467.Google Scholar
  15. Corriga, G., Sanna, S., Usai, G., 1991. An optimal tandem active-passive suspension system for road vehicles with minimum power consumption. IEEE Trans. Ind. Electron., 38(3):210–216. [doi:10.1109/41.87589]CrossRefGoogle Scholar
  16. Crews, J.H., Mattson, M.G., Buckner, G.D., 2011. Multiobjective control optimization for semi-active vehicle suspensions. J. Sound Vibr., 330(23):5502–5516. [doi:10.1016/j.jsv.2011.05.036]CrossRefGoogle Scholar
  17. Delphi, 2005. Delphi Magneride. Available from [Accessed on May 22, 2011].Google Scholar
  18. Efatpenah, K., Beno, J.H., Nichols, S.P., 2000. Energy requirements of a passive and an electromechanical active suspension system. Veh. Syst. Dynam., 34(6):437–458. [doi:10.1076/vesd.34.6.437.2050]CrossRefGoogle Scholar
  19. Elmadany, M.M., Qarmoush, A.O., 2011. Dynamic analysis of a slow-active suspension system based on a full car model. J. Vibr. Contr., 17(1):39–53. [doi:10.1177/1077546309352828]zbMATHCrossRefGoogle Scholar
  20. Fialho, I.J., Balas, G.J., 2000. Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis. Veh. Syst. Dynam., 33(5):351–370. [doi:10.1076/0042-3114(200005)33:5;1-Q;FT351]CrossRefGoogle Scholar
  21. Fialho, I.J., Balas, G.J., 2002. Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans. Contr. Syst. Technol., 10(1):43–54. [doi:10.1109/87.974337]CrossRefGoogle Scholar
  22. Fijalkowski, B.T., 2011. Automotive Mechatronics: Operational and Practical. Springer, London.CrossRefGoogle Scholar
  23. Fischer, D., Isermann, R., 2004. Mechatronic semi-active and active vehicle suspensions. Contr. Eng. Pract., 12(11):1353–1367. [doi:10.1016/j.conengprac.2003.08.003]CrossRefGoogle Scholar
  24. Gao, G.S., Yang, S.P., 2006. Semi-active control performance of railway vehicle suspension featuring magnetorheological dampers. Proc. 1st IEEE Conf. on Industrial Electronics and Applications, p.1–5.Google Scholar
  25. Gao, H., Lam, J., Wang, C., 2006. Multi-objective control of vehicle active suspension systems via loaddependent controllers. J. Sound Vibr., 290(3–5):654–675. [doi:10.1016/j.jsv.2005.04.007]CrossRefGoogle Scholar
  26. Gavriloski, V., Danev, D., Angushev, K., 2007. Mechatronic approach in vehicle suspension system design. World Congr., 12:45–58.Google Scholar
  27. Genger, C., 2009. Active and Semi-active Suspension Control for Specific Point Isolation of Vehicles. MS Thesis, University of California, Davis, USA.Google Scholar
  28. Giorgetti, N., Bemporad, A., Tseng, H.E., et al., 2005. Hybrid model predictive control application towards optimal semi-active suspension. Proc. IEEE Int. Symp. on Industrial Electronics, p.391–398.Google Scholar
  29. Graves, K.E., Iovenitti, P.G., Toncich, D., 2000. Electromagnetic regenerative damping in vehicle suspension systems. Int. J. Veh. Des., 24(2/3):182–197. [doi:10.1504/IJVD.2000.005181]CrossRefGoogle Scholar
  30. Guglielmino, E., Sireteanu, T., Stammers, C.W., et al., 2010. Semi-active Suspension Control: Improved Vehicle Ride and Road Friendliness. Springer, London.Google Scholar
  31. Gysen, B.L.J., Janssen, J.L.G., Paulides, J.J.H., et al., 2009. Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Trans. Ind. Appl., 45(5):1589–1597. [doi:10.1109/TIA.2009.2027097]CrossRefGoogle Scholar
  32. Gysen, B.L.J., Paulides, J.J.H., Janssen, J.L.G., et al., 2010. Active electromagnetic suspension system for improved vehicle dynamics. IEEE Trans. Veh. Technol., 59(3):1156–1163. [doi:10.1109/TVT.2009.2038706]CrossRefGoogle Scholar
  33. Hać, A., 1987. Adaptive control of vehicle suspension. Veh. Syst. Dynam., 16(2):57–74. [doi:10.1080/00423118708968870]CrossRefGoogle Scholar
  34. Heiring, B., Ersoy, M., 2011. Chassis Handbook: Fundamental, Driving Dynamics, Mechatronics, Perspectives. Springer, p.590.Google Scholar
  35. Hrovat, D., 1997. Survey of advanced suspension developments and related optimal control applications. Automatica, 33(10):1781–1817. [doi:10.1016/S0005-1098(97)00101-5]MathSciNetzbMATHCrossRefGoogle Scholar
  36. Isermann, R., 2006. Automotive mechatronic systems-general developments and examples. Automatisierungstechnik, 54(9):419–429.CrossRefGoogle Scholar
  37. Jamshidi, F., Shaabany, A., 2011. Robust control of an active suspension system using H 2 & H control methods. J. Am. Sci., 7(5):1–5.Google Scholar
  38. Jonasson, M., Roos, F., 2008. Design and evaluation of an active electromechanical wheel suspension system. Mechatronics, 18(4):218–230. [doi:10.1016/j.mecha tronics.2007.11.003]CrossRefGoogle Scholar
  39. Jones, W.D., 2005. Easy ride: Bose Corp. uses speaker technology to give cars adaptive suspension. IEEE Spectrum, 42(5):12–14.CrossRefGoogle Scholar
  40. Kaleemullah, M., Faris, W.F., Hasbullah, F., 2011. Design of robust H , fuzzy and LQR controller for active suspension of a quarter car model. 4th Int. Conf. on Mechatronics, p.1–6.Google Scholar
  41. Karnopp, D., 1983. Active damping in road vehicle suspension systems. Veh. Syst. Dynam., 12(6):291–311. [doi:10.1080/00423118308968758]CrossRefGoogle Scholar
  42. Karnopp, D., 1986. Theoretical limitations in active vehicle suspensions. Veh. Syst. Dynam., 15(1):41–54. [doi:10.1080/00423118608968839]CrossRefGoogle Scholar
  43. Karnopp, D., Margolis, D., 1984. Adaptive suspension concepts for road vehicles. Veh. Syst. Dynam., 13(3):145–160. [doi:10.1080/00423118408968772]CrossRefGoogle Scholar
  44. Karnopp, D.C., Crosby, M.J., Harwood, R.A., 1974. Vibration control using semiactive force generators. ASME J. Eng. Ind., 96(2):619–626. [doi:10.1115/1.3438373]CrossRefGoogle Scholar
  45. Kim, H., Hyun, S.Y., Park, Y., 2002. Improving the vehicle performance with active suspension using roadsensing algorithm. Comput. Struct., 80(18–19):1569–1577. [doi:10.1016/S0045-7949(02)00110-4]CrossRefGoogle Scholar
  46. Koch, G.P.A., 2011. Adaptive Control of Mechatronic Vehicle Suspension. PhD Thesis, Technical University of Munich, Munich, Germany.Google Scholar
  47. Kruczek, A., Stribrsky, A., Honc, J., et al., 2010. Controller choice for car active suspension. Int. J. Mech., 3(4):61–68.Google Scholar
  48. Kumar, M.S., Vijayarangan, S., 2006. Design of LQR controller for active suspension system. Ind. J. Eng. Mater. Sci., 13:173–179.Google Scholar
  49. Lai, C.Y., Liao, W.H., 2002. Vibration control of a suspension system via a magnetorheological fluid damper. J. Vibr. Contr., 8(4):527–547. [doi:10.1177/107754602023712]CrossRefGoogle Scholar
  50. Lam, Q., Wang, L., Zhang, N., 2013. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle. IEEE Intelligent Vehicles Symp., p.383–390. [doi:10.1109/IVS.2013.6629499]Google Scholar
  51. Leite, V.J.S., Peres, P.L.D., 2005. Pole location control design of an active suspension system with uncertain parameters. Veh. Syst. Dynam., 43(8):561–579. [doi:10.1080/0042311042000266702]CrossRefGoogle Scholar
  52. Li, H., Yu, J., Hilton, C., et al., 2013. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach. IEEE Trans. Ind. Electron., 60(8):3328–3338. [doi:10.1109/TIE.2012.2202354]CrossRefGoogle Scholar
  53. Lin, J.S., Ioannis, K., 1997a. Nonlinear design of active suspensions. IEEE Contr. Syst., 17(3):45–59. [doi:10.1109/37.588129]CrossRefGoogle Scholar
  54. Lin, J.S., Ioannis, K., 1997b. Road-adaptive nonlinear design of active suspensions. Proc. American Control Conf., p.714–718.Google Scholar
  55. Liu, H.M., Mok, T.K., Li, Y., et al., 2005. Comparison between GA and gradient descent algorithm in parameter optimization of UPFC fuzzy damping controller. Electr. Power Autom. Equipment, 25(11):5–10.Google Scholar
  56. Liu, L., Wang, B., 2008. Multi objective robust active vibration control for flexure jointed struts of stewart platforms via H and µ synthesis. Chin. J. Aeronaut., 21(2):125–133. [doi:10.1016/S1000-9361(08)60016-3]CrossRefGoogle Scholar
  57. Martins, I., Esteves, M., da Silva, F.P., et al., 1999. Electromagnetic hybrid active-passive vehicle suspension system. Proc. IEEE 49th Vehicular Technology Conf., p.125–133.Google Scholar
  58. Martins, I., Esteves, J., Marques, G.D., et al., 2006. Permanent-magnets linear actuators applicability in automobile active suspensions. IEEE Trans. Veh. Technol., 55(1):86–94. [doi:10.1109/TVT.2005.861167]CrossRefGoogle Scholar
  59. Möller, N., 2009. Porsche Engineering Magazine. Porsche Engineering, Germany, p.28.Google Scholar
  60. Nagai, M., 1993. Recent researches on active suspensions for ground vehicles. JSME Int. J. Ser. C, 36(2):161–170.Google Scholar
  61. Nurhadi, H., 2010. Study on Control of Bus Suspension System. Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember (ITS).Google Scholar
  62. Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006a. Active roll compensation for automotive applications using a brushless direct-drive linear permanent magnet actuator. 37th IEEE Power Electronics Specialists Conf., p.1–6. [doi:10.1109/PESC.2006.1712068]CrossRefGoogle Scholar
  63. Paulides, J.J.H., Encica, L., Lomonova, E.A., et al., 2006b. Design considerations for a semi-active electromagnetic suspension system. IEEE Trans. Magnet., 42(10):3446–3448. [doi:10.1109/TMAG.2006.879963]CrossRefGoogle Scholar
  64. Peter, H., 2012. ABC Active Body Control / MBC Magic Body Control. Available from [Accessed on Apr. 12, 2011].Google Scholar
  65. Pyper, M., Schiffer, W., Schneider, W., 2003. ABC-Active Body Control. Landsberg/Lech: Verl. Moderne Industrie.Google Scholar
  66. Rajamani, R., 2011. Vehicle Dynamics and Control. Springer, p.325–355.Google Scholar
  67. Rajamani, R., Hedrick, J.K., 1995. Adaptive observers for active automotive suspensions: theory and experiment. IEEE Trans. Contr. Syst. Technol., 3(1):86–93. [doi:10.1109/87.370713]CrossRefGoogle Scholar
  68. Ramsbottom, M., Crolla, D.A., 1999. Simulation of an adaptive controller for a limited bandwidth active suspension. Int. J. Veh. Des., 21(4/5):355–371. [doi:10.1504/IJVD.1999.005590]CrossRefGoogle Scholar
  69. Ryu, S., Park, Y., Suh, M., 2011. Ride quality analysis of a tracked vehicle suspension with a preview control. J. Terramech., 48(6):409–417. [doi:10.1016/j.jterra.2011.09.002]CrossRefGoogle Scholar
  70. Salem, M., Aly, A.A., 2009. Fuzzy control of a quarter-car suspension system. World Acad. Sci., 5:258–263.Google Scholar
  71. Sam, Y.M., Hudha, K., 2006. Modelling and force tracking control of hydraulic actuator for an active suspension system. 1st IEEE Conf. on Industrial Electronics and Applications, p.1–6.Google Scholar
  72. Sam, Y.M., Shah, J.H., Osman, B., 2005. Modeling and control of the active suspension system using proportional integral sliding mode approach. Asian J. Contr., 7(2):91–98. [doi:10.1111/j.1934-6093.2005.tb00378.x]CrossRefGoogle Scholar
  73. Savaresi, S., Poussot-Vassal, C., Spelta, C., et al., 2010. Semi-active Suspension Control Design for Vehicles. Butterworth-Heinemann, Amsterdam, the Netherlands.Google Scholar
  74. Sharp, R.S., Crolla, D.A., 1987. Road vehicle system design—a review. Veh. Syst. Dynam., 16(3):167–192. [doi:10.1080/00423118708968877]CrossRefGoogle Scholar
  75. Shoukry, Y., El-Shafie, M., Hammad, S., 2010. Networked embedded generalized predictive controller for an active suspension system. Proc. American Control Conf., p.4570–4575.Google Scholar
  76. Smith, M.C., Walker, G.W., 2000. Performance limitations and constraints for active and passive suspensions: a mechanical multi-port approach. Veh. Syst. Dynam., 33(3):137–168. [doi:10.1076/0042-3114(200003)33:3;1-Y;FT137]CrossRefGoogle Scholar
  77. Strassberger, M., Guldner, J., 2004. BMW’s dynamic drive: an active stabilizer bar system. IEEE Contr. Syst., 24(4):28–29, 107. [doi:10.1109/MCS.2004.1316650]CrossRefGoogle Scholar
  78. Stribrsky, A., Hyniova, K., Honcu, J., et al., 2007. Energy recuperation in automotive active suspension systems with linear electric motor. Mediterranean Conf. on Control and Automation, p.1–5. [doi:10.1109/MED.2007.4433870]Google Scholar
  79. Sun, J., Wang, Y., Liang, H., 2010. Comparative study on vibration control of engineering vehicle suspension system. Int. Conf. on Intelligent Computation Technology and Automation, p.989–992. [doi:10.1109/ICICTA.2010.669]Google Scholar
  80. Sun, W., Zhao, Y., Li, J., et al., 2012. Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron., 59(1):530–537. [doi:10.1109/TIE.2011.2134057]CrossRefGoogle Scholar
  81. Sun, W., Zhao, Z., Gao, H., 2013. Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron., 60(9):3889–3896. [doi:10.1109/TIE.2012.2206340]CrossRefGoogle Scholar
  82. Tran, M.N., Hrovat, D., 1993. Application of gain scheduling to design of active suspensions. Proc. 32nd IEEE Decision and Control Conf., p.1030–1035.Google Scholar
  83. Venhovens, P.J.T., 1993. Optimal Control of Vehicle Suspensions. PhD Thesis, Delft University of Technology, Delft, the Netherlands.Google Scholar
  84. Venhovens, P.J.T., 1994. The development and implementation of adaptive semi-active suspension control. Veh. Syst. Dynam., 23(1):211–235. [doi:10.1080/00423119408969057]CrossRefGoogle Scholar
  85. Voelcker, J., 2008. The soul of a new Mercedes. IEEE Spectrum, 45(12):36–41. [doi:10.1109/MSPEC.2008.4687367]CrossRefGoogle Scholar
  86. Williams, R.A., Best, A., 1994. Control of a low frequency active suspension. Int. Conf. on Control, p.338–343. [doi:10.1049/cp:19940155]CrossRefGoogle Scholar
  87. Wu, W., Ma, L., Yang, Q., 2011. Active optimal control for multi-dim vibration damping device based on parallel mechanism. 2nd Int. Conf. on Mechanic Automation and Control Engineering, p.5531–5534.Google Scholar
  88. Xu, L., Guo, X., 2010. Hydraulic transmission electromagnetic energy-regenerative active suspension and its working principle. 2nd Int. Workshop on Intelligent Systems and Applications, p.1–5.Google Scholar
  89. Xue, X.D., Cheng, K.W.E., Zhang, Z., et al., 2011. Investigation on parameters of automotive electromagnetic active suspensions. 4th Int. Conf. on Power Electronics Systems and Applications, p.1–5.Google Scholar
  90. Yamashita, M., Fujimori, K., Uhlik, C., et al., 1990. H control of an automotive active suspension. Proc. 29th IEEE Conf. on Decision and Control, p.2244–2250. [doi:10.1109/CDC.1990.204024]CrossRefGoogle Scholar
  91. Zhang, Y., Alleyne, A., 2005. A practical and effective approach to active suspension control. Veh. Syst. Dynam., 43(5):305–330. [doi:10.1080/00423110412331282869]CrossRefGoogle Scholar
  92. Zhong, X., Ichchou, M., Gillot, F., et al., 2010. A dynamic-reliable multiple model adaptive controller for active vehicle suspension under uncertainties. Smart Mater. Struct., 19(4):045007. [doi:10.1088/0964-1726/19/4/045007]CrossRefGoogle Scholar
  93. Zin, A., Sename, O., Gaspar, P., et al., 2008. Robust LPV-H control for active suspensions with performance adaptation in view of global chassis control. Veh. Syst. Dynam., 46(10):889–912. [doi:10.1080/00423110701684587]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Wajdi S. Aboud
    • 1
    • 3
  • Sallehuddin Mohamed Haris
    • 1
  • Yuzita Yaacob
    • 2
  1. 1.Centre for Automotive ResearchUniversiti Kebangsaan MalaysiaUKM BangiMalaysia
  2. 2.Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaUKM BangiMalaysia
  3. 3.Institute of Technology-BaghdadFoundation of Technical EducationBaghdadIraq

Personalised recommendations