Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 11, pp 1009–1020 | Cite as

Performance-driven assignment and mapping for reliable networks-on-chips

  • Qian-qi Le
  • Guo-wu Yang
  • William N. N. Hung
  • Xiao-yu Song
  • Fu-you Fan
Article

Abstract

Network-on-chip (NoC) communication architectures present promising solutions for scalable communication requests in large system-on-chip (SoC) designs. Intellectual property (IP) core assignment and mapping are two key steps in NoC design, significantly affecting the quality of NoC systems. Both are NP-hard problems, so it is necessary to apply intelligent algorithms. In this paper, we propose improved intelligent algorithms for NoC assignment and mapping to overcome the drawbacks of traditional intelligent algorithms. The aim of our proposed algorithms is to minimize power consumption, time, area, and load balance. This work involves multiple conflicting objectives, so we combine multiple objective optimization with intelligent algorithms. In addition, we design a fault-tolerant routing algorithm and take account of reliability using comprehensive performance indices. The proposed algorithms were implemented on embedded system synthesis benchmarks suite (E3S). Experimental results show the improved algorithms achieve good performance in NoC designs, with high reliability.

Key words

Network-on-chip (NoC) Mapping Assignment Reliability 

CLC number

TP202 TN402 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11714_2014_1545_MOESM1_ESM.pdf (157 kb)
Supplementary material, approximately 157 KB.
11714_2014_1545_MOESM2_ESM.pdf (423 kb)
Supplementary material, approximately 422 KB.
11714_2014_1545_MOESM3_ESM.pdf (203 kb)
Supplementary material, approximately 203 KB.
11714_2014_1545_MOESM4_ESM.pdf (445 kb)
Supplementary material, approximately 445 KB.
11714_2014_1545_MOESM5_ESM.pdf (158 kb)
Supplementary material, approximately 157 KB.
11714_2014_1545_MOESM6_ESM.pdf (428 kb)
Supplementary material, approximately 427 KB.
11714_2014_1545_MOESM7_ESM.pdf (157 kb)
Supplementary material, approximately 157 KB.
11714_2014_1545_MOESM8_ESM.pdf (437 kb)
Supplementary material, approximately 436 KB.
11714_2014_1545_MOESM9_ESM.pdf (158 kb)
Supplementary material, approximately 157 KB.
11714_2014_1545_MOESM10_ESM.pdf (440 kb)
Supplementary material, approximately 439 KB.
11714_2014_1545_MOESM11_ESM.pdf (158 kb)
Supplementary material, approximately 157 KB.
11714_2014_1545_MOESM12_ESM.pdf (383 kb)
Supplementary material, approximately 382 KB.

References

  1. Bjerregaard, T., Mahadevan, S., 2006. A survey of research and practices of network-on-chip. ACM Comput. Surv., 38(1):1.1–1.51. [doi:10.1145/1132952.1132953]CrossRefGoogle Scholar
  2. Cheng, A.L., Pan, Y., Yan, X.L., et al., 2011. A general communication performance evaluation model based on routing path decomposition. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 12(7):561–573. [doi:10.1631/jzus.C1000281]CrossRefGoogle Scholar
  3. da Silva, M.V.C., Nedjah, N., Mourelle, L.M., 2010. Power-aware multi-objective evolutionary optimisation for application mapping on network-on-chip platforms. Int. J. Electron., 97(10):1163–1179. [doi:10.1080/00207217.2010.512105]CrossRefGoogle Scholar
  4. Das, R., Eachempati, S., Mishra, A.K., et al., 2009. Design and evaluation of a hierarchical on-chip interconnect for next-generation CMPs. Proc. IEEE 15th Int. Symp. on High Performance Computer Architecture, p.175–186. [doi:10.1109/HPCA.2009.4798252]Google Scholar
  5. Hu, J., Marculescu, R., 2003. Energy-aware mapping for tile-based NoC architectures under performance constraints. Proc. Asia and South Pacific Design Automation Conf., p.233–239. [doi:10.1109/ASPDAC.2003.1195022]Google Scholar
  6. Hung, W.N.N., Song, X., 2001. BDD variable ordering by scatter search. Proc. Int. Conf. on Computer Design, p.368–373. [doi:10.1109/ICCD.2001.955053]Google Scholar
  7. Jena, R.K., Sharma, G.K., 2007. A multi-objective evolutionary algorithm based optimization model for network-on-chip synthesis. Proc. 4th Int. Conf. on Information Technology, p.977–982. [doi:10.1109/ITNG.2007.10]Google Scholar
  8. Liu, W., Gu, Z., Xu, J., et al., 2011. Satisfiability modulo graph theory for task mapping and scheduling on multiprocessor systems. IEEE Trans. Parall. Distr. Syst., 22(8):1382–1389. [doi:10.1109/TPDS.2010.204]CrossRefGoogle Scholar
  9. Marculescu, R., Ogras, U.Y., Peh, L.S., et al., 2009. Outstanding research problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 28(1):3–21. [doi:10.1109/TCAD.2008.2010691]CrossRefGoogle Scholar
  10. Masehian, E., Sedighizadeh, D., 2010. Multi-objective robot motion planning using a particle swarm optimization model. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(8):607–619. [doi:10.1631/jzus.C0910525]CrossRefGoogle Scholar
  11. Muralimanohar, N., Balasubramonian, R., Jouppi, N., 2007. Optimizing NUCA organizations and wiring alternatives for large caches with CACTI 6.0. Proc. 40th Annual IEEE/ACM Int. Symp. on Microarchitecture, p.3–14. [doi:10.1109/MICRO.2007.33]CrossRefGoogle Scholar
  12. Orgas, U.Y., Hu, J., Marculescu, R., 2005. Key research problems in NoC design: a holistic perspective. Proc. 3rd IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and System Synthesis, p.69–74. [doi:10.1145/1084834.1084856]Google Scholar
  13. Rao, A.R.M., Arvind, N., 2005. A scatter search algorithm for stacking sequence optimisation of laminate composites. Compos. Struct., 70(4):383–402. [doi:10.1016/j.compstruct.2004.09.031]CrossRefGoogle Scholar
  14. Refan, F., Alemzadeh, H., Safari, S., et al., 2008. Reliability in application specific mesh-based NoC architectures. Proc. 14th IEEE Int. On-line Testing Symp., p.207–212. [doi:10.1109/IOLTS.2008.53]Google Scholar
  15. Saxena, P.C., Gupta, S., Rai, J., 2003. A delay optimal coterie on the k-dimensional folded Petersen graph. J. Parall. Distr. Comput., 63(11):1026–1035. [doi:10.1016/S0743-7315(03)00116-3]CrossRefMATHGoogle Scholar
  16. Sepulveda, M.J., Strum, M., Chau, W.J., 2011. A multi-objective adaptive immune algorithm for NoC mapping. Proc. 17th IFIP Int. Conf. on Very Large Scale Integration, p.193–196. [doi:10.1109/VLSISOC.2009.6041354]Google Scholar
  17. Tang, L., Kumar, S., 2003. A two-step genetic algorithm for mapping task graphs to a network on chip architecture. Euromicro Symp. on Digital System Design, p.180–187. [doi:10.1109/DSD.2003.1231923]Google Scholar
  18. Wang, J., Jiao, Y., Song, X., et al., 2012a. Optimal training sequences for indoor wireless optical communications. J. Opt., 14(1):015401.1–015401.5. [doi:10.1088/2040-8978/14/1/015401]Google Scholar
  19. Wang, J., Xie, X., Jiao, Y., et al., 2012b. Optimal odd-periodic complementary sequences for diffuse wireless optical communications. Opt. Eng., 51(9):095002.1–095002.6. [doi:10.1117/1.OE.51.9.095002]CrossRefGoogle Scholar
  20. Yu, Q., Ampadu, P., 2010. A flexible parallel simulator for networks-on-chip with error control. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst., 29(1):103–116. [doi:10.1109/TCAD.2009.2034353]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Qian-qi Le
    • 1
    • 2
  • Guo-wu Yang
    • 1
  • William N. N. Hung
    • 3
  • Xiao-yu Song
    • 4
  • Fu-you Fan
    • 1
  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Information and Computing ScienceChengdu University of TechnologyChengduChina
  3. 3.Synopsys Inc.Mountain ViewUSA
  4. 4.Department of Electronic and Computer EngineeringPortland State UniversityPortlandUSA

Personalised recommendations