Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 7, pp 551–563 | Cite as

Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal

Article

Abstract

We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.

Key words

Fuzzy c-means clustering Kernel method Global optimization Consonant/vowel segmentation 

CLC number

TN912 TP391.4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagirov, A.M., 2008. Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn., 41(10):3192–3199. [doi:10.1016/j.patcog.2008. 04.004]CrossRefMATHGoogle Scholar
  2. Balasko, B., Abonyi, J., Feil, B., 2005. Fuzzy Clustering and Data Analysis Toolbox. Department of Process Engineering, University of Veszprem, Veszprem.Google Scholar
  3. Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.CrossRefMATHGoogle Scholar
  4. Bozkir, A.S., Sezer, E.A., 2013. FUAT—a fuzzy clustering analysis tool. Expert Syst. Appl., 40(3):842–849. [doi:10. 1016/j.eswa.2012.05.038]CrossRefGoogle Scholar
  5. Chiang, J.H., Hao, P.Y., 2003. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans. Fuzzy Syst., 11(4):518–527. [doi:10. 1109/TFUZZ.2003.814839]CrossRefGoogle Scholar
  6. Cover, T.M., 1965. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electr. Comput., EC-14(3): 326–334. [doi:10.1109/PGEC.1965.264137]CrossRefGoogle Scholar
  7. Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. Wiley, New York.MATHGoogle Scholar
  8. Dunn, J.C., 1973. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern., 3(3):32–57. [doi:10.1080/01969727308546046]CrossRefMATHMathSciNetGoogle Scholar
  9. Filippone, M., Camastra, F., Masulli, F., et al., 2008. A survey of kernel and spectral methods for clustering. Pattern Recogn., 41(1):176–190. [doi:10.1016/j.patcog.2007.05.018]CrossRefMATHGoogle Scholar
  10. Girolami, M., 2002. Mercer kernel-based clustering in feature space. IEEE Trans. Neur. Netw., 13(3):780–784. [doi:10.1109/TNN.2002.1000150]CrossRefGoogle Scholar
  11. Gong, M., Su, L., Jia, M., et al., 2014. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst., 22(1):98–109. [doi:10.1109/TFUZZ.2013.2249072]CrossRefGoogle Scholar
  12. Hu, Y., Wu, D., Nucci, A., 2013. Fuzzy-clustering-based decision tree approach for large population speaker identification. IEEE Trans. Audio Speech Lang. Process., 21(4):762–774. [doi:10.1109/TASL.2012.2234113]CrossRefGoogle Scholar
  13. Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv., 31(3):264–323. [doi:10.1145/331499.331504]CrossRefGoogle Scholar
  14. Jamaati, M., Marvi, H., 2008. Performance assessment of joint feature derived from Mellin-cepstrum for vowel recognition. Int. Rev. Electr. Eng. IREE, 3(6):1077–1086.Google Scholar
  15. Kim, D.W., Lee, K.Y., Lee, D., et al., 2005. Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recogn., 38(4):607–611. [doi:10.1016/j.patcog.2004.09.006]CrossRefGoogle Scholar
  16. Li, Z., Tang, S., Xue, J., et al., 2001. Modified FCM clustering based on kernel mapping. Multispectral Image Processing and Pattern Recognition, International Society for Optics and Photonics, p.241–245. [doi:10.1117/12.441658]Google Scholar
  17. Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recogn., 36(2):451–461. [doi:10.1016/S0031-3203(02)00060-2]CrossRefGoogle Scholar
  18. Liu, C., Zhang, X., Li, X., et al., 2012. Gaussian kernelized fuzzy c-means with spatial information algorithm for image segmentation. J. Comput., 7(6):1511–1518. [doi:10.4304/jcp.7.6.1511-1518]Google Scholar
  19. Mercer, J., 1909. Functions of positive and negative type, and their connection with the theory of integral equations. Phil. Trans. R. Soc. Lond. Ser. A, 209(441–458):415–446. [doi:10.1098/rsta.1909.0016]CrossRefMATHGoogle Scholar
  20. Muller, K., Mika, S., Ratsch, G., et al., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neur. Netw., 12(2):181–201. [doi:10.1109/72.914517]CrossRefGoogle Scholar
  21. Nguyen, T.M., Wu, Q.M.J., 2013. Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. Fuzzy Syst., 21(6):1019–1031. [doi:10.1109/TFUZZ.2013.2240689]CrossRefMathSciNetGoogle Scholar
  22. Picone, J.W., 1993. Signal modeling techniques in speech recognition. Proc. IEEE, 81(9):1215–1247. [doi:10.1109/5.237532]CrossRefGoogle Scholar
  23. Shen, H.B., Yang, J., Wang, S.T., et al., 2006. Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput., 10(11): 1061–1073. [doi:10.1007/s00500-005-0043-5]CrossRefGoogle Scholar
  24. Tsai, D.M., Lin, C.C., 2011. Fuzzy c-means based clustering for linearly and nonlinearly separable data. Pattern Recogn., 44(8):1750–1760. [doi:10.1016/j.patcog.2011.02.009]CrossRefMATHGoogle Scholar
  25. Wang, W., Zhang, Y., Li, Y., et al., 2006. The global fuzzy c-means clustering algorithm. 6th World Congress on Intelligent Control and Automation, p.3604–3607. [doi:10.1109/WCICA.2006.1713041]Google Scholar
  26. Wu, Z., Xie, W., Yu, J., 2003. Fuzzy c-means clustering algorithm based on kernel method. Proc. 5th Int. Conf. on Computational Intelligence and Multimedia Applications, p.49–54. [doi:10.1109/iccima.2003.1238099]Google Scholar
  27. Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neur. Netw., 16(3):645–678. [doi:10.1109/TNN.2005.845141]CrossRefGoogle Scholar
  28. Yang, M.S., Tsai, H.S., 2008. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett., 29(12):1713–1725. [doi:10.1016/j.patrec.2008.04.016]CrossRefMathSciNetGoogle Scholar
  29. Yu, C.Y., Li, Y., Liu, A.L., et al., 2011. A novel modified kernel fuzzy c-means clustering algorithm on image segementation. IEEE 14th Int. Conf. on Computational Science and Engineering, p.621–626. [doi:10.1109/cse.2011.109]Google Scholar
  30. Zadeh, L.A., 1965. Fuzzy sets. Inf. Contr., 8(3):338–353. [doi:10.1016/S0019-9958(65)90241-X]CrossRefMATHMathSciNetGoogle Scholar
  31. Zhang, D.Q., Chen, S.C., 2002. Fuzzy clustering using kernel method. Int. Conf. on Control and Automation, p.162–163. [doi:10.1109/icca.2002.1229535]Google Scholar
  32. Zhang, D.Q., Chen, S.C., 2003a. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neur. Process. Lett., 18(3):155–162. [doi:10.1023/B:NEPL. 0000011135.19145.1b]CrossRefGoogle Scholar
  33. Zhang, D.Q., Chen, S.C., 2003b. Kernel-based fuzzy and possibilistic c-means clustering. Proc. Int. Conf. on Artificial Neural Network, p.122–125.Google Scholar
  34. Zhang, D.Q., Chen, S.C., 2004. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32(1):37–50. [doi:10.1016/j.artmed.2004.01.012]CrossRefGoogle Scholar
  35. Zhao, F., 2013. Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing, 106:115–125. [doi:10.1016/j.neucom.2012.10.022]CrossRefGoogle Scholar
  36. Zhou, S., Gan, J.Q., 2004. Mercer kernel, fuzzy c-means algorithm, and prototypes of clusters. LNCS, 3177: 613–618. [doi:10.1007/978-3-540-28651-6_90]Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Electronic EngineeringJeonbuk National UniversityJeonju-siKorea
  2. 2.Advanced Electronics and Information Research CenterJeonbuk National UniversityJeonju-siKorea

Personalised recommendations