Journal of Zhejiang University SCIENCE C

, Volume 15, Issue 4, pp 265–274 | Cite as

Modeling dual-scale epidemic dynamics on complex networks with reaction diffusion processes



The frequent outbreak of severe foodborne diseases (e.g., haemolytic uraemic syndrome and Listeriosis) in 2011 warns of a potential threat that world trade could spread fatal pathogens (e.g., enterohemorrhagic Escherichia coli). The epidemic potential from trade involves both intra-proliferation and inter-diffusion. Here, we present a worldwide vegetable trade network and a stochastic computational model to simulate global trade-mediated epidemics by considering the weighted nodes and edges of the network and the dual-scale dynamics of epidemics. We address two basic issues of network structural impact in global epidemic patterns: (1) in contrast to the prediction of heterogeneous network models, the broad variability of node degree and edge weights of the vegetable trade network do not determine the threshold of global epidemics; (2) a ‘penetration effect’, by which community structures do not restrict propagation at the global scale, quickly facilitates bridging the edges between communities, and leads to synchronized diffusion throughout the entire network. We have also defined an appropriate metric that combines dual-scale behavior and enables quantification of the critical role of bridging edges in disease diffusion from widespread trading. The unusual structure mechanisms of the trade network model may be useful in producing strategies for adaptive immunity and reducing international trade frictions.

Key words

Worldwide trade networks Foodborne diseases Scale-free networks Mean-field analysis 

CLC number

TP39 R18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, L.A.N., Scala, A., Barthélémy, M., et al., 2000. Classes of small-world networks. Proc. Natl. Acad. Sci. USA, 97(21):11149–11152. [doi:10.1073/pnas.200327197]CrossRefGoogle Scholar
  2. Balcan, D., Colizza, V., Goncalves, B., et al., 2009. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA, 106(51):21484–21489. [doi:10.1073/pnas.0906910106]CrossRefGoogle Scholar
  3. Barrat, A., Barthélemy, M., Pastor-Satorras, R., et al., 2004. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101(11):3747–3752. [doi:10.1073/pnas.0400087101]CrossRefGoogle Scholar
  4. Bennet, N., 2011. Infectious disease surveillance update. The Lancet Infect. Dis., 11(11):815. [doi:10.1016/S1473-3099(11)70305-X]CrossRefGoogle Scholar
  5. Cauchemez, S., Bhattarai, A., Marchbanks, T.L., et al., 2011. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc. Natl. Acad. Sci. USA, 108(7):2825–2830. [doi:10.1073/pnas.1008895108]CrossRefGoogle Scholar
  6. Chase-Dunn, C., Kawano, Y., Brewer, B.D., 2000. Trade globalization since 1795: waves of integration in the world-system. Am. Sociol. Rev., 65(1):77–95. [doi:10.2307/2657290]CrossRefGoogle Scholar
  7. Clauset, A., Shalizi, C.R., Newman, M.E.J., 2009. Power-law distributions in empirical data. SIAM Rev., 51(4):661–703. [doi:10.1137/070710111]MATHMathSciNetCrossRefGoogle Scholar
  8. Colizza, V., Barrat, A., Barthélemy, M., et al., 2006. The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. USA, 103(7):2015–2020. [doi:10.1073/pnas.0510525103]CrossRefGoogle Scholar
  9. Colizza, V., Pastor-Satorras, R., Vespignani, A., 2007. Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys., 3(4):276–282. [doi: 10.1038/nphys560]CrossRefGoogle Scholar
  10. Dolgin, E., 2011. As E. coli continues to claim lives, new approaches offer hope. Nat. Med., 17(7):755. [doi:10.1038/nm0711-755]CrossRefGoogle Scholar
  11. Eguíluz, V.M., Klemm, K., 2002. Epidemic threshold in structured scale-free networks. Phys. Rev. Lett., 89(10): 108701. [doi:10.1103/PhysRevLett.89.108701]CrossRefGoogle Scholar
  12. Frank, C., Werber, D., Cramer, J.P., et al., 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med., 365(19): 1771–1780. [doi:10.1056/NEJMoa1106483]CrossRefGoogle Scholar
  13. Gang, Y., Tao, Z., Jie, W., et al., 2005. Epidemic spread in weighted scale-free networks. Chin. Phys. Lett., 22(2): 510–513. [doi:10.1088/0256-307X/22/2/068]CrossRefGoogle Scholar
  14. Guimerà, R., Mossam, S., Turtschi, A., et al., 2005. The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA, 102(22):7794–7799. [doi:10.1073/pnas.0407994102]MATHMathSciNetCrossRefGoogle Scholar
  15. Hu, Y., Zhu, D., 2009. Empirical analysis of the worldwide maritime transportation network. Phys. A, 388(10):2061–2071. [doi:10.1016/j.physa.2008.12.016]CrossRefGoogle Scholar
  16. Khan, K., Arino, J., Hu, W., et al., 2009. Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med., 361(2):212–214. [doi:10.1056/NEJMc0904559]CrossRefGoogle Scholar
  17. Kitano, H., 2004. Biological robustness. Nat. Rev. Genet., 5(11):826–837. [doi:10.1038/nrg1471]CrossRefGoogle Scholar
  18. Kuperman, M., Abramson, G., 2001. Small world effect in an epidemiological model. Phys. Rev. Lett., 86(13):2909. [doi:10.1103/PhysRevLett.86.2909]CrossRefGoogle Scholar
  19. Kupferschmidt, K., 2011a. Scientists rush to study genome of lethal E. coli. Science, 332(6035):1249–1250. [doi:10.1126/science.332.6035.1249]CrossRefGoogle Scholar
  20. Kupferschmidt, K., 2011b. As E. coli outbreak recedes, new questions come to the fore. Science, 333(6038):27. [doi:10.1126/science.333.6038.27]CrossRefGoogle Scholar
  21. Newman, M.E.J., 2002. Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128. [doi:10.1103/Phys-RevE.66.016128]MathSciNetCrossRefGoogle Scholar
  22. Newman, M.E.J., 2003. The structure and function of complex networks. SIAM Rev., 45(2):167–256. [doi:10.1137/S003614450342480]MATHMathSciNetCrossRefGoogle Scholar
  23. Newman, M.E.J., 2006. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 103(23):8577–8582. [doi:10.1073/pnas.0601602103]CrossRefGoogle Scholar
  24. Newman, M.E.J., Girvan, M., 2004. Finding and evaluating community structure in networks. Phys. Rev. E, 69(2): 026113. [doi:10.1103/PhysRevE.69.026113]CrossRefGoogle Scholar
  25. Pastor-Satorras, R., Vespignani, A., 2001. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86(14):3200–3203. [doi:10.1103/PhysRevLett.86.3200]CrossRefGoogle Scholar
  26. Rocha, L.E.C., Liljeros, F., Holme, P., 2010. Information dynamics shape the sexual networks of Internet-mediated prostitution. Proc. Natl. Acad. Sci. USA, 107(13):5706–5711. [doi:10.1073/pnas.0914080107]MATHCrossRefGoogle Scholar
  27. Rosvall, M., Bergstrom, C.T., 2008. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA, 105(4):1118–1123. [doi:10.1073/pnas.0706851105]CrossRefGoogle Scholar
  28. Salathé, M., Jones, J.H., 2010. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol., 6(4):e1000736. [doi:10.1371/journal.pcbi.1000736]CrossRefGoogle Scholar
  29. Santos, F.C., Rodrigues, J.F., Pacheco, J.M., 2005. Epidemic spreading and cooperation dynamics on homogeneous small-world networks. Phys. Rev. E, 72(5):056128. [doi:10.1103/PhysRevE.72.056128]CrossRefGoogle Scholar
  30. Serrano, M.Á., Boguñá, M., 2003. Topology of the World Trade Web. Phys. Rev. E, 68(1):015101. [doi:10.1103/PhysRevE.68.015101]CrossRefGoogle Scholar
  31. Variano, E.A., McCoy, J.H., Lipson, H., 2004. Networks, dynamics, and modularity. Phys. Rev. Lett., 92(18): 188701. [doi:10.1103/PhysRevLett.92.188701]CrossRefGoogle Scholar
  32. Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of small-world networks. Nature, 393(6684):440–442. [doi: 10.1038/30918]CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.AI Institute in College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations