Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 11, pp 815–821 | Cite as

A multi-crossover and adaptive island based population algorithm for solving routing problems

  • Eneko Osaba
  • Enrique Onieva
  • Roberto Carballedo
  • Fernando Diaz
  • Asier Perallos
  • Xiao Zhang
Science Letters

Abstract

We propose a multi-crossover and adaptive island based population algorithm (MAIPA). This technique divides the entire population into subpopulations, or demes, each with a different crossover function, which can be switched according to the efficiency. In addition, MAIPA reverses the philosophy of conventional genetic algorithms. It gives priority to the autonomous improvement of the individuals (at the mutation phase), and introduces dynamism in the crossover probability. Each subpopulation begins with a very low value of crossover probability, and then varies with the change of the current generation number and the search performance on recent generations. This mechanism helps prevent premature convergence. In this research, the effectiveness of this technique is tested using three well-known routing problems, i.e., the traveling salesman problem (TSP), capacitated vehicle routing problem (CVRP), and vehicle routing problem with backhauls (VRPB). MAIPA proves to be better than a traditional island based genetic algorithm for all these three problems.

Key words

Island model Adaptive algorithm Combinatorial optimization Vehicle routing problems Intelligent transportation systems 

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbuudayasankar, S., Ganesh, K., Lenny Koh, S.C., Ducq, Y., 2012. Modified savings heuristics and genetic algorithm for bi-objective vehicle routing problem with forced backhauls. Expert Syst. Appl., 39(3):2296–2305. [doi:10.1016/j.eswa.2011.08.009]CrossRefGoogle Scholar
  2. Bae, J., Rathinam, S., 2012. Approximation algorithms for multiple terminal, Hamiltonian path problems. Optim. Lett., 6(1):69–85. [doi:10.1007/s11590-010-0252-4]MathSciNetCrossRefMATHGoogle Scholar
  3. Cantú-Paz, E., 1998. A survey of parallel genetic algorithms. Calcul. Parall. Res. Syst. Rep., 10(2):141–171.Google Scholar
  4. Davis, L., 1985. Applying Adaptive Algorithms to Epistatic Domains. Proc. Int. Joint Conf. on Artificial Intelligence, p.161–163.Google Scholar
  5. de Jong, K., 1975. Analysis of the Behavior of a Class of Genetic Adaptive Systems. MS Thesis, University of Michigan, Michigan, USA.Google Scholar
  6. Goldberg, D., 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston, USA.MATHGoogle Scholar
  7. Golden, B., Baker, E., Alfaro, J., Schaffer, J., 1985. The Vehicle Routing Problem with Backhauling: Two Approaches. Proc. 21st Annual Meeting of SETIMS, p.90–92.Google Scholar
  8. Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Michigan, USA.Google Scholar
  9. Laporte, G., 1992. The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res., 59(3):345–358. [doi:10.1016/0377-2217(92)90192-C]CrossRefMATHGoogle Scholar
  10. Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S., 1999. Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev., 13(2):129–170. [doi:10.1023/A:1006529012972]CrossRefGoogle Scholar
  11. Lawler, E., Lenstra, J., Kan, A., Shmoys, D., 1985. The Traveling Salesman Problem: a Guided Tour of Combinatorial Optimization, Volume 3. Wiley, New York, USA.Google Scholar
  12. Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell Syst. Techn. J., 44(10):2245–2269. [doi:10.1002/j.1538-7305.1965.tb04146.x]CrossRefMATHGoogle Scholar
  13. Martínez-Torres, M., 2012. A genetic search of patterns of behaviour in OSS communities. Expert Syst. Appl., 39(18):13182–13192. [doi:10.1016/j.eswa.2012.05.083]CrossRefGoogle Scholar
  14. Mattos Ribeiro, G., Laporte, G., 2012. An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res., 39(3):728–735. [doi:10.1016/j.cor.2011.05.005]MathSciNetCrossRefMATHGoogle Scholar
  15. Moon, I., Lee, J.H., Seong, J., 2012. Vehicle routing problem with time windows considering overtime and outsourcing vehicles. Expert Syst. Appl., 39(18):13202–13213. [doi:10.1016/j.eswa.2012.05.081]CrossRefGoogle Scholar
  16. Mukherjee, S., Ganguly, S., Das, S., 2012. A strategy adaptive genetic algorithm for solving the travelling salesman problem. LNCS, 7677:778–784. [doi:10.1007/978-3-642-35380-2_91]Google Scholar
  17. Ngueveu, S., Prins, C., Wolfler Calvo, R., 2010. An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Oper. Res., 37(11):1877–1885. [doi:10.1016/j.cor.2009.06.014]MathSciNetCrossRefMATHGoogle Scholar
  18. Niu, B., Zhu, Y., He, X., Wu, H., 2007. MCPSO: a multi-swarm cooperative particle swarm optimizer. Appl. Math. Comput., 185(2):1050–1062. [doi:10.1016/j.amc.2006.07.026]CrossRefMATHGoogle Scholar
  19. Osaba, E., Carballedo, R., Diaz, F., Perallos, A., 2013. Analysis of the Suitability of Using Blind Crossover Operators in Genetic Algorithms for Solving Routing Problems. Proc. 8th Int. Symp. on Applied Computational Intelligence and Informatics, p.17–23.Google Scholar
  20. Ray, S., Bandyopadhyay, S., Pal, S., 2004. New Operators of Genetic Algorithms for Traveling Salesman Problem. Proc. 17th Int. Conf. on Pattern Recognition, p.497–500.Google Scholar
  21. Reinelt, G., 1991. TSPLIB: a traveling salesman problem library. ORSA J. Comput., 3(4):376–384. [doi:10.1287/ijoc.3.4.376]CrossRefMATHGoogle Scholar
  22. Sarin, S.C., Sherali, H.D., Yao, L., 2011. New formulation for the high multiplicity asymmetric traveling salesman problem with application to the Chesapeake problem. Optim. Lett., 5(2):259–272. [doi:10.1007/s11590-010-0205-y]MathSciNetCrossRefMATHGoogle Scholar
  23. Schaffer, J.D., Morishima, A., 1987. An Adaptive Crossover Distribution Mechanism for Genetic Algorithms. Proc. 2nd Int. Conf. on Genetic Algorithms and Their Application, p.36–40.Google Scholar
  24. Spears, W.M., 1995. Adapting Crossover in Evolutionary Algorithms. Proc. Conf. on Evolutionary Programming, p.367–384.Google Scholar
  25. Syswerda, G., 1991. Schedule Optimization Using Genetic Algorithms. In: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, USA, p.332–349.Google Scholar
  26. Tsai, P.W., Pan, J.S., Liao, B.Y., Chu, S.C., 2009. Enhanced artificial bee colony optimization. Int. J. Innov. Comput. Inf. Control, 5(12):5081–5092.Google Scholar
  27. Wang, L., Tang, D.B., 2011. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem. Expert Syst. Appl., 38(6): 7243–7250. [doi:10.1016/j.eswa.2010.12.027]CrossRefGoogle Scholar
  28. Whitley, D., Rana, S., Heckendorn, R.B., 1999. The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol., 7:33–48.Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eneko Osaba
    • 1
  • Enrique Onieva
    • 1
  • Roberto Carballedo
    • 1
  • Fernando Diaz
    • 1
  • Asier Perallos
    • 1
  • Xiao Zhang
    • 1
  1. 1.Deusto Institute of Technology (DeustoTech)University of DeustoBilbaoSpain

Personalised recommendations