Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 12, pp 918–929 | Cite as

An improved parallel contrast-aware halftoning

  • Ling-yue Liu
  • Wei Chen
  • Tien-tsin Wong
  • Wen-ting Zheng
  • Wei-dong Geng


Digital image halftoning is a widely used technique. However, achieving high fidelity tone reproduction and structural preservation with low computational time cost remains a challenging problem. This paper presents a highly parallel algorithm to boost real-time application of serial structure-preserving error diffusion. The contrast-aware halftoning approach is one such technique with superior structure preservation, but it offers only a limited opportunity for graphics processing unit (GPU) acceleration. Our method integrates contrast-aware halftoning into a new parallelizable error-diffusion halftoning framework. To eliminate visually disturbing artifacts resulting from parallelization, we propose a novel multiple quantization model and space-filling curve to maintain tone consistency, blue-noise property, and structure consistency. Our GPU implementation on a commodity personal computer achieves a real-time performance for a moderately sized image. We demonstrate the high quality and performance of the proposed approach with a variety of examples, and provide comparisons with state-of-the-art methods.

Key words

Digital image halftoning Error diffusion GPU Quantization Space-filling curve 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Analoui, M., Allebach, J.P., 1992. Model-based halftoning using direct binary search. SPIE, p.96–108.Google Scholar
  2. Bayer, B.E., 1973. An Optimum Method for Two-Level Rendition of Continuous-Tone Pictures. IEEE Int. Conf. on Communications, p.26-11–26-15.Google Scholar
  3. Billotet-Hoffmann, C., Bryngdahl, O., 1983. On the error diffusion technique for electronic halftoning. Proc. Soc. Inf. Display, 24(3):253–258.Google Scholar
  4. Chang, J.H., Alain, B., Ostromoukhov, V., 2009. Structure-aware error diffusion. ACM Trans. Graph., 28(5):162:1–162:8. [doi:10.1145/1661412.1618508]Google Scholar
  5. Chang, T.C., Allebach, J.P., 2003. Memory efficient errordiffusion. IEEE Trans. Image Process., 12(11):1352–1366. [doi:10.1109/TIP.2003.818214]CrossRefGoogle Scholar
  6. Eschbach, R., Knox, K.T., 1991. Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A, 8(12):1844–1850. [doi:10.1364/JOSAA.8.001844]CrossRefGoogle Scholar
  7. Floyd, R.W., Steinberg, L., 1976. An adaptive algorithm for spatial grayscale. Proc. Soc. Inf. Display, 17(2):75–77.Google Scholar
  8. Knuth, D.E., 1987. Digital halftones by dot diffusion. ACM Trans. Graph., 6(4):245–273. [doi:10.1145/35039.35040]CrossRefMATHGoogle Scholar
  9. Li, H., Mould, D., 2010. Contrast-aware halftoning. Comput. Graph. Forum, 29(2):273–280. [doi:10.1111/j.1467-8659.2009.01596.x]CrossRefGoogle Scholar
  10. Li, P.S., Allebach, J.P., 2004. Tone-dependent error diffusion. IEEE Trans. Image Process., 13(2):201–215. [doi:10.1109/TIP.2003.819232]CrossRefGoogle Scholar
  11. Li, P.S, Allebach, J.P., 2005. Block interlaced pinwheel error diffusion. J. Electron. Imag., 14(2):023007. [doi:10.1117/1.1900136]CrossRefGoogle Scholar
  12. Matković, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W., 2005. Global Contrast Factor—a New Approach to Image Contrast. Proc. 1st Eurographics Conf. on Computational Aesthetics in Graphics, Visualization and Imaging, p.159–167.Google Scholar
  13. Mitsa, T., Parker, K.J., 1992. Digital halftoning technique using a blue-noise mask. J. Opt. Soc. Am. A, 9(11):1920–1929. [doi:10.1364/JOSAA.9.001920]CrossRefGoogle Scholar
  14. Neuhoff, D.L., Pappas, T.N., Seshadri, N., 1997. One-dimensional least-squares model-based halftoning. J. Opt. Soc. Am. A, 14(8):1707–1723. [doi:10.1364/JOSAA.14.001707]CrossRefGoogle Scholar
  15. Ostromoukhov, V., 2001. A Simple and Efficient Error-Diffusion Algorithm. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.567–572. [doi:10.1145/383259.383326]Google Scholar
  16. Pang, W.M., Qu, Y.G., Wong, T.T., Cohen-Or, D., Heng, P.A., 2008. Structure-aware halftoning. ACM Trans. Graph., 27(3):89:1–89:8. [doi:10.1145/1360612.1360688]Google Scholar
  17. Ulichney, R., 1987. Digital Halftoning. MIT Press, Cambridge, MA.Google Scholar
  18. Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56–79. [doi:10.1109/5.3288]CrossRefGoogle Scholar
  19. Velho, L., Gomes, J.D.M., 1991. Digital halftoning with space filling curves. ACM SIGGRAPH Comput. Graph., 25(4): 81–90. [doi:10.1145/127719.122727]CrossRefGoogle Scholar
  20. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612. [doi:10.1109/TIP.2003.819861]CrossRefGoogle Scholar
  21. Wei, L.Y., 2008. Parallel Poisson disk sampling. ACM Trans. Graph., 27(3):20:1–20:9. [doi:10.1145/1360612.1360619]Google Scholar
  22. Witten, I.H., Neal, R.M., 1982. Using Peano curves for bilevel display of continuous-tone images. IEEE Comput. Graph. Appl., 2(3):47–52. [doi:10.1109/MCG.1982.1674228]CrossRefGoogle Scholar
  23. Wong, T.T., Hsu, S.C., 1995. Halftoning with Selective Precipitation and Adaptive Clustering. In: Paeth, A.W. (Ed.), Graphics Gems V (IBM Version). Morgan Kaufmann, Burlington, USA, p.302–313.Google Scholar
  24. Wu, H.S., Wong, T.T., Heng, P.A., 2013. Parallel structure-aware halftoning. Multim. Tools Appl., 67(3):529–547. [doi:10.1007/s11042-012-1048-6]CrossRefGoogle Scholar
  25. Zhang, Y.F., Webber, R.E., 1993. Space Diffusion: an Improved Parallel Halftoning Technique Using Space-Filling Curves. Proc. 20th Annual Conf. on Computer Graphics and Interactive Techniques, p.305–312. [doi:10.1145/166117.166156]Google Scholar
  26. Zhou, B.F., Fang, X.F., 2003. Improving mid-tone quality of variable-coefficient error diffusion using threshold modulation. ACM Trans. Graph., 22(3):437–444. [doi:10.1145/882262.882289]CrossRefGoogle Scholar
  27. Zhou, Y., Chen, C., Wang, Q., Bu, J.J., 2009. Block-Based Threshold Modulation Error Diffusion. Proc. 16th IEEE Int. Conf. on Image Processing, p.2033–2036. [doi:10.1109/ICIP.2009.5413974]Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ling-yue Liu
    • 1
  • Wei Chen
    • 1
  • Tien-tsin Wong
    • 2
  • Wen-ting Zheng
    • 1
  • Wei-dong Geng
    • 1
  1. 1.State Key Lab of CAD & CGZhejiang UniversityHangzhouChina
  2. 2.Department of Computer Science and EngineeringThe Chinese University of Hong KongHong KongChina

Personalised recommendations