Advertisement

Journal of Zhejiang University SCIENCE C

, Volume 14, Issue 4, pp 258–263 | Cite as

Measurement of wireless pressure sensors fabricated in high temperature co-fired ceramic MEMS technology

  • Ji-jun Xiong
  • Shi-jun Zheng
  • Ying-ping Hong
  • Jun Li
  • Ying-lin Wang
  • Wei Wang
  • Qiu-lin Tan
Article

Abstract

High temperature co-fired ceramics (HTCCs) have wide applications with stable mechanical properties, but they have not yet been used to fabricate sensors. By introducing the wireless telemetric sensor system and ceramic structure embedding a pressure-deformable cavity, the designed sensors made from HTCC materials (zirconia and 96% alumina) are fabricated, and their capacities for the pressure measurement are tested using a wireless interrogation method. Using the fabricated sensor, a study is conducted to measure the atmospheric pressure in a sealed vessel. The experimental sensitivity of the device is 2 Hz/Pa of zirconia and 1.08 Hz/Pa of alumina below 0.5 MPa with a readout distance of 2.5 cm. The described sensor technology can be applied for monitoring of atmospheric pressure to evaluate important component parameters in harsh environments.

Key words

High temperature co-fired ceramic (HTCC) Wireless Micro-electro-mechanical systems (MEMS) 

CLC number

TP212 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birdsell, E., Allen, M.G., 2006. Wireless Chemical Sensors for High Temperature Environments. Solid-State Sensors, Actuatos, and Microsystems Workshop, p.212–215.Google Scholar
  2. Birdsell, E., Park, J., Allen, M., 2004. Wireless Ceramic Sensors Operating in High Temperature Environments. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit.Google Scholar
  3. Birol, H., Maeder, T., Ryser, P., 2006. Processing of graphite-based sacrificial layer for microfabrication of low temperature co-fired ceramic (LTCC). Sens. Actuat. A, 130–131:560–567. [doi:10.1016/j.sna.2005.12.009]CrossRefGoogle Scholar
  4. Chen, P., 2008. Implantable Wireless Intraocular Pressure Sensor. PhD Thesis, California Institute of Technology, p.6–27.Google Scholar
  5. Chen, P.J., Rodger, D.C., Saati, S., Humayun, M.S., Tai, Y.C., 2008. Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. J. Microelectromech. Syst., 17(6):1342–1351. [doi:10.1109/JMEMS.2008.2004945]CrossRefGoogle Scholar
  6. Cullinane, W.F., Strange, R.R., 1999. Gas turbine engine validation instrumentation: measurements, sensors, and needs. SPIE, 3852:2–13. [doi:10.1117/12.372833]CrossRefGoogle Scholar
  7. Fonseca, M.A., 2007. Polymer/Ceramic Wireless MEMS Pressure Sensors for Harsh Environments: High Temperature and Biomedical Applications. PhD Thesis, Georgia Institute of Technology.Google Scholar
  8. Fonseca, M.A., English, J., Allen, M., 2002. Wireless micro-machined ceramic pressure sensor for high temperature application. J. Microelectromech. Syst., 8(4):1–3. [doi:10.1109/JMEMS.2002.800939]Google Scholar
  9. Imanaka, Y., 2004. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology. Springer, New York.Google Scholar
  10. Malecha, K., Golonka, L., 2008. Microchannel fabrication process in LTCC ceramic. Microelectron. Rel., 48(6): 866–871. [doi:10.1016/j.microrel.2008.03.013]CrossRefGoogle Scholar
  11. Ong, J.B., You, Z., Mills-Beale, J., Tan, E.L., Pereles, B.D., Ong, K.G., 2008. A wireless, passive embedded sensor for real-time monitoring of water content in civil engineering materials. IEEE Sens. J., 8(12):2053–2058. [doi:10.1109/JSEN.2008.2007681]CrossRefGoogle Scholar
  12. Pulliam, W.J., Russler, P.M., Fielder, R.S., 2002. High temperature high-bandwidth fiber-optic MEMS pressure-sensor technology for turbine engine component testing. SPIE, 4578:229–238. [doi:10.1117/12.456079]CrossRefGoogle Scholar
  13. Radosavljevic, G.J., Zivanov, L.D., Smetana, W., Maric, A.M., Unger, M., Nad, L.F., 2009. A wireless embedded resonant pressure sensors fabricated in the LTCC technology. IEEE Sens. J., 9(12):1956–1962. [doi:10.1109/JSEN.2009.2030974]CrossRefGoogle Scholar
  14. Timoshenko, S., 1984. Theory of Plates and Shells. McGraw Hill, London.Google Scholar
  15. Wahlers, R.L., Stein, S.J., Feingold, A.H., Bless, P.W., 2012. Ceramic Tapes for Wireless Applications. Available from http://electro-science.com/publications/ACerS%20St.Louis'00.pdf [Accessed on June 2, 2012].Google Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ji-jun Xiong
    • 1
    • 2
  • Shi-jun Zheng
    • 1
    • 2
  • Ying-ping Hong
    • 1
    • 2
  • Jun Li
    • 3
  • Ying-lin Wang
    • 3
  • Wei Wang
    • 1
    • 2
  • Qiu-lin Tan
    • 1
    • 2
  1. 1.Key Laboratory of Instrumentation Science & Dynamic MeasurementNorth University of ChinaTaiyuanChina
  2. 2.MOE Science and Technology on Electronic Test & Measurement LaboratoryNorth University of ChinaTaiyuanChina
  3. 3.The Second Research Institute of China Electronics Technology Group CorporationTaiyuanChina

Personalised recommendations