Journal of Zhejiang University SCIENCE C

, Volume 13, Issue 7, pp 544–551 | Cite as

A high performance simulation methodology for multilevel grid-connected inverters

Article

Abstract

To design a high reliability multilevel grid-connected inverter, a high performance simulation methodology based on Saber is proposed. The simulation methodology with optimized simulation speed can simulate the factors that have significant impacts on the stability and performance of the control system, such as digital delay, dead band, and the quantization error. The control algorithm in the simulation methodology is implemented using the C language, which facilitates the future porting to an actual system since most actual digital controllers are programmed in the C language. The modeling of the control system is focused mainly on diode-clamped three-level grid-connected inverters, and simulations for other topologies can be easily built based on this simulation. An example of designing a proportional-resonant (PR) controller with the aid of the simulation is introduced. The integer scaling effect in fixed-point digital signal processors (DSPs) on the control system is demonstrated and the performance of the controller is validated through experiments.

Key words

Multilevel grid-connected inverter Simulation methodology Proportional-resonant (PR) controller 

CLC number

TM464 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alepuz, S., Busquets-Monge, S., Bordonau, J., Gago, J., Gonzalez, D., Balcells, J., 2006. Interfacing renewable energy sources to the utility grid using a three-level inverter. IEEE Trans. Ind. Electron., 53(5):1504–1511. [doi:10.1109/TIE.2006.882021]CrossRefGoogle Scholar
  2. Bao, W.B., Bao, J.Y., 2010. Modeling and Simulation of Multilevel Current Source Inverter Based on SIMetrix/SIMPLIS. Int. Conf. on Computer Application and System Modeling, p.466–470. [doi:10.1109/ICCASM.2010.5620416]Google Scholar
  3. Castoldi, M.F., Aguiar, M.L., Junior, A.A.O., Monteiro, J.R.B.A., 2006. A Rapid Prototype Design to Investigate the FPGA-Based DTC Strategy Applied to the Speed Control of Induction Motors. IEEE Int. Conf. on Industrial Technology, p.955–960. [doi:10.1109/ICIT.2006.372304]Google Scholar
  4. Chwirka, S., 2000. Using the Powerful SABER Simulator for Simulation, Modeling, and Analysis of Power Systems, Circuits, and Devices. 7th Workshop on Computers in Power Electronics, p.172–176. [doi:10.1109/CIPE.2000.904711]Google Scholar
  5. Haghdar, K., Shayanfar, H.A., Alavi, M.H.S., 2011. Selective Harmonics Elimination of Multi Level Inverters via Methods of GPS, SA and GA. Asia-Pacific Power and Energy Engineering Conf., p.1–5. [doi:10.1109/APPEEC.2011.5749056]Google Scholar
  6. Jiang, S., Liang, J., Liu, Y., Yamazaki, K., Fujishima, M., 2005. Modeling and Cosimulation of FPGA-Based SVPWM Control for PMSM. 31st Annual Conf. of IEEE Industrial Electronics Society, p.1538–1543. [doi:10.1109/IECON.2005.1569133]Google Scholar
  7. Lu, S., Corzine, K.A., Fikse, T.H., 2005. Advanced Control of Cascaded Multilevel Drives Based on P-Q Theory. IEEE Int. Conf. on Electric Machines and Drives, p.1415–1422. [doi:10.1109/IEMDC.2005.195907]Google Scholar
  8. Nichols, K.G., Lin, J.T., Brown, A.D., Kazmierski, T.J., Zwolinski, M., 1993. Reliability of Circuit-Level Simulation. IEE Colloquium on Surviving Problems in Circuit Evaluation, p.1–4.Google Scholar
  9. Nussbaumer, T., Heldwein, M.L., Gong, G., Kolar, J.W., 2005. Prediction Techniques Compensating Delay Times Caused by Digital Control of a Three-Phase Buck-Type PWM Rectifier System. 40th Annual Meeting of Industry Applications Conf., p.923–927. [doi:10.1109/IAS.2005.1518454]Google Scholar
  10. Rabinovici, R., Baimel, D., Tomasik, J., Zuckerberger, A., 2010. Series space vector modulation for multi-level cascaded H-bridge inverters. IET Power Electron., 3(6): 843–857. [doi:10.1049/iet-pel.2009.0220]CrossRefGoogle Scholar
  11. Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E., 2010. A survey on neutral-point-clamped inverters. IEEE Tran. Ind. Electron., 57(7):2219–2230. [doi:10.1109/TIE.2009.2032430]CrossRefGoogle Scholar
  12. Selvaraj, J., Rahim, N.A., 2009. Multilevel inverter for grid-connected PV system employing digital PI controller. IEEE Trans. Ind. Electron., 56(1):149–158. [doi:10.1109/TIE.2008.928116]CrossRefGoogle Scholar
  13. Sepahvand, H., Ferdowsi, M., Corzine, K.A., 2011. Fault Recovery Strategy for Hybrid Cascaded H-Bridge Multi-level Inverters. 26th IEEE Applied Power Electronics Conf. and Exposition, p.1629–1633. [doi:10.1109/APEC.2011.5744813]Google Scholar
  14. Tehrani, K.A., Rasoanarivo, I., Barrandon, L., Hamzaoui, M., Sargos, F.M., Rafiei, M., 2010. A New Current Control Using Two Hysteresis Modulation for a New 3-Level Inverter. 12th Int. Conf. on Optimization of Electrical and Electronic Equipment, p.652–658. [doi:10.1109/OPTIM.2010.5510355]Google Scholar
  15. Teodorescu, R., Blaabjerg, F., Liserre, M., Loh, P.C., 2006. Proportional-resonant controllers and filters for grid-connected voltage-source converters. IEE Proc. Electr. Power Appl., 153(5):750–762.CrossRefGoogle Scholar

Copyright information

© Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lu-jun Wang
    • 1
  • Tao Yang
    • 1
  • Da-min Zhang
    • 1
  • Zheng-yu Lu
    • 1
  1. 1.State Key Laboratory of Power ElectronicsZhejiang UniversityHangzhouChina

Personalised recommendations