Journal of Zhejiang University SCIENCE C

, Volume 11, Issue 6, pp 407–417

Three-dimensional organ modeling based on deformable surfaces applied to radio-oncology

  • Gloria Bueno
  • Oscar Déniz
  • Jesús salido
  • Carmen Carrascosa
  • José M. Delgado
Article
  • 67 Downloads

Abstract

This paper describes a method based on an energy minimizing deformable model applied to the 3D biomechanical modeling of a set of organs considered as regions of interest (ROI) for radiotherapy. The initial model consists of a quadratic surface that is deformed to the exact contour of the ROI by means of the physical properties of a mass-spring system. The exact contour of each ROI is first obtained using a geodesic active contour model. The ROI is then parameterized by the vibration modes resulting from the deformation process. Once each structure has been defined, the method provides a 3D global model including the whole set of ROIs. This model allows one to describe statistically the most significant variations among its structures. Statistical ROI variations among a set of patients or through time can be analyzed. Experimental results are presented using the pelvic zone to simulate anatomical variations among structures and its application in radiotherapy treatment planning.

Key words

3D biomechanical organ modeling Energy minimizing deformable model Finite element model Geodesic active contour Radiotherapy treatment planning 

CLC number

TP391.4 R73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banik, S., Rangayyan, R., Boag, G., 2009. Landmarking and Segmentation of 3D CT Images. Springer Berlin Heidelberg. [doi:10.1007/s11548-009-0289-y]Google Scholar
  2. Bueno, G., 2008. Fuzzy Systems and Deformable Models. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 10. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.305–329.Google Scholar
  3. Bueno, G., Fisher, M., Burnham, K., 2001. Automatic Segmentation of Clinical Structures for RTP: Evaluation of a Morphological Approach. Proc. Medical Image Understanding and Analysis, p.73–76.Google Scholar
  4. Bueno, G., Martínez, A., Adán, A., 2004. Fuzzy snake segmentation of anatomical structures applied to CT images. LNCS, 3212:33–42.Google Scholar
  5. Bueno, G., Déniz, O., Carrascosa, C., Delgado, J., Brualla, L., 2009. Fast Monte Carlo simulation on a voxelized human phantom deformed to a patient. Med. Phys., 36(11):5162–5174. [doi:10.1118/1.3245877]CrossRefGoogle Scholar
  6. Camapum, J., Silva, A., Freitas, A., Bassani, H., 2004. Segmentation of Clinical Structures from Images of the Human Pelvic Area. Proc. 17th Brazilian Symp. on Computer Graphics and Image Processing, p.10–16. [doi:10.1109/SIBGRA.2004.1352937]Google Scholar
  7. Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours. Int. J. Comput. Vis., 22(1):61–79. [doi:10.1023/A:1007979827043]MATHCrossRefGoogle Scholar
  8. Collier, D., Burnett, S., Amin, M., 2003. Assessment of consistency in contouring of normal-tissue anatomic structures. J. Appl. Clin. Med. Phys., 4(1):17–24. [doi:10.1120/1.1521271]CrossRefGoogle Scholar
  9. Costa, M., Delingette, H., Ayache, N., 2007. Automatic Segmentation of the Bladder Using Deformable Models. 4th IEEE Int. Symp on Biomedical Imaging: from Nano to Macro, p.904–907. [doi:10.1109/ISBI.2007.356999]Google Scholar
  10. Déniz, O., Castrillón, M., Lorenzo, J., Antón, L., Hernandez, M., Bueno, G., 2010. Computer vision based eyewear selector. J. Zheijang Univ.-Sci. C (Comput. & Eletron.), 11(2):79–91. [doi:10.1631/jzus.C0910377]CrossRefGoogle Scholar
  11. Fisher, M., Su, Y., Aldridge, R., 2008. Some Applications of Intelligent Systems in Cancer Treatment: a Review. In: Haas, O.C.L., Burnham, K.J. (Eds.), Intelligent and Adaptive Systems in Medicine, Chapter 9. Series in Medical Physics and Biomedical Engineering. Taylor & Francis Group, London, p.283–303.Google Scholar
  12. Foskey, M., Davis, B., Goyal, L., Chang, S., Chaney, E., Strehl, N., Tomei, S., Rosenman, J., Joshi, S., 2005. Large deformation three-dimensional image registration in image-guided radiation therapy. Phys. Med. Biol., 50(24):5869–5892. [doi:10.1088/0031-9155/50/24/008]CrossRefGoogle Scholar
  13. Gibou, F., Levy, D., Cádenas, C., 2005. Partial differential equations based segmentation for radiotherapy treatment planning. Math. Biosci. Eng., 2(2):209–226.MathSciNetGoogle Scholar
  14. Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., et al., 2008. Assessment of consistency in contouring of normal-tissue anatomic structures. Phys. Med. Biol., 53(6):1751–1771. [doi:10.1088/0031-9155/53/6/017]CrossRefGoogle Scholar
  15. Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: active contour models. Int. J. Comput. Vis., 1(4):321–331. [doi:10.1007/BF00133570]CrossRefGoogle Scholar
  16. Lee, C., Chung, P., 2004. Identifying Abdominal Organs Using Robust Fuzzy Inference Model. IEEE Int. Conf. on Networking, Sensing and Control, 2:1289–1294. [doi:10.1109/ICNSC.2004.1297133]CrossRefGoogle Scholar
  17. Lee, M., Park, S., Cho, W., Kim, S., Jeong, C., 2008. Segmentation of medical images using a geometric deformable model and its visualization. Can. J. Electr. Comput. Eng., 33(1):15–19. [doi:10. 1109/CJECE.2008.4621790]CrossRefGoogle Scholar
  18. Malladi, R., Sethian, J., Vemuri, B., 1995. Shape modeling with front propagation: a level set approach. IEEE Trans. PAMI, 17(4):158–175.Google Scholar
  19. Mazonakis, M., Damilakis, J., Varveris, H., Prassopoulos, P., Gourtsoyiannis, N., 2001. Image segmentation in treatment planning for prostate cancer using the region growing technique. Br. J. Radiol., 74:243–249.Google Scholar
  20. Nastar, C., Ayache, N., 1996. Frequency-based nonrigid motion analysis. IEEE Trans. PAMI, 18(11):1069–1079. [doi:10.1109/34.544076]Google Scholar
  21. Nikou, C., Bueno, G., Heitz, F., Armspach, J., 2001. A joint physics-based statistical deformable model for multimodal brain image analysis. IEEE Trans. Med. Imag., 20(10):1026–1037. [doi:10.1109/42.959300]CrossRefGoogle Scholar
  22. Osher, S., Paragios, N., 2003. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer-Verlag New York.Google Scholar
  23. Paragios, N., 2002. A level set approach for shape driven segmentation and tracking of the left ventricle. IEEE Trans. Nucl. Sci., 21(3):21–43.Google Scholar
  24. Pentland, A., Sclaroff, S., 1991. A closed-form solutions for physically-based shape modelling and recognition. IEEE Trans. PAMI, 13(7):730–742.Google Scholar
  25. Ripoche, X., Atif, J., Osorio, A., 2004. A 3D Discrete Deformable Model Guided by Mutual Information for Medical Image Segmentation. Proc. Medical Imaging Conf., p.1–3.Google Scholar
  26. Rousson, M., Khamene, A., Diallo, M., 2005. Constrained surface evolutions for prostate and bladder segmentation in CT images. LNCS, 3765:251–260. [doi:10.1007/11569541_26]Google Scholar
  27. Shepp, L., Logan, B., 1974. The Fourier reconstruction of a head section. IEEE Trans. Med. Imag., 22(6):773–776.Google Scholar
  28. Shi, F., Yang, J., Zhu, Y., 2009. Automatic segmentation of bladder in CT images. J. Zhejiang Univ.-Sci. A, 10(2):239–246. [doi:10.1631/jzus.A0820157]MATHCrossRefGoogle Scholar
  29. Su, Y., Fisher, M., Rowland, R.S., 2007. Markerless intra-fraction organ motion tracking using hybrid ASM. Int. J. Comput. Assist. Radiol. Surg., 2(3–4):231–243. [doi:10.1007/s11548-007-0133-1]CrossRefGoogle Scholar
  30. Terzopoulos, D., Fleischer, K., 1988. Deformable models. The Vis. Comput., 4(6):306–331. [doi:10.1007/BF01908877]CrossRefGoogle Scholar
  31. Webb, S., 2006. Does elastic tissue intrafraction motion with density changes forbid motion-compensated radiotherapy? Phys. Med. Biol., 51(6):1449–1462. [doi:10.1088/0031-9155/51/6/006]CrossRefGoogle Scholar

Copyright information

© ?Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gloria Bueno
    • 1
  • Oscar Déniz
    • 1
  • Jesús salido
    • 1
  • Carmen Carrascosa
    • 2
  • José M. Delgado
    • 3
  1. 1.Grupo de Visión y Sistemas InteligentesUniversidad de Castilla-La ManchaCiudad RealSpain
  2. 2.Hospital General de Ciudad RealCiudad RealSpain
  3. 3.Instituto Oncológico (Grupo IMO)MadridSpain

Personalised recommendations