Advertisement

MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages

MicroRNA 在肿瘤免疫中的作用: 对肿瘤相关巨噬细胞的功能调控

  • 14 Accesses

Abstract

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME) and are critical for cancer initiation and progression. MicroRNAs (miRNAs) could notably influence the phenotype of TAMs through various targets and signal pathways during cancer progression due to their post-transcriptional regulation. In this review, we discuss mainly the regulatory function of miRNAs on macrophage differentiation, functional polarization, and cellular crosstalk. Firstly, during the generation process, miRNAs take part in the differentiation from myeloid cells to mature macrophages, and this maturation process directly influences their recruitment into the TME, attracted by tumor cells. Secondly, macrophages in the TME can be either tumor-promoting or tumor-suppressing, depending on their functional polarization. Large numbers of miRNAs can influence the polarization of macrophages, which is crucial for tumor progression, including tumor cell invasion, intravasation, extravasation, and premetastatic site formation. Thirdly, crosstalk between tumor cells and macrophages is essential for TME formation and tumor progression, and miRNAs can be the mediator of communication in different forms, especially when encapsulated in microvesicles or exosomes. We also assess the potential value of certain macrophage-related miRNAs (MRMs) as diagnostic and prognostic markers, and discuss the possible development of MRM-based therapies.

概要

肿瘤相关巨噬细胞 (TAM) 是肿瘤微环境中比例最高的免疫细胞, 对肿瘤的发生和发展起着重要的作用. 在肿瘤的进展过程中, microRNA 可以通过转录后调控的方式作用于多种靶点与信号通路来影响 TAM 的表型. 本文主要讨论了 microRNA 对巨噬细胞分化、功能性极化和细胞间信息交流的调控作用. 首先, microRNA 参与了从髓样细胞向成熟巨噬细胞的分化过程, 这一过程直接影响了肿瘤微环境中肿瘤细胞对巨噬细胞的招募. 其次, microRNA 参与了 TAM 的功能极化, 使之表现为促癌或抑癌表型, 影响了肿瘤的生长和转移. 第三, 肿瘤细胞与巨噬细胞间的相互作用对肿瘤微环境的形成和肿瘤的进展而言是必要的, microRNA 可以通过胞外颗粒的形式作为交流的媒介. 此外, 本文还讨论了巨噬细胞相关 microRNA 作为肿瘤诊断和预后标志物的潜在价值, 以及基于巨噬细胞相关 microRNA 的肿瘤治疗新策略的应用前景.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Amin MB, Greene FL, Edge SB, et al., 2017. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin, 67(2): 93–99. https://doi.org/10.3322/caac.21388

  2. Baer C, Squadrito ML, Laoui D, et al., 2016. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol, 18(7):790–802. https://doi.org/10.1038/ncb3371

  3. Bai XZ, Zhang JL, Cao MY, et al., 2018. MicroRNA-146a protects against LPS-induced organ damage by inhibiting Notch1 in macrophage. Int Immunopharmacol, 63:220-226. https://doi.org/10.1016/j.intimp.2018.07.040

  4. Bala S, Marcos M, Kodys K, et al., 2011. Up-regulation of microRNA-155 in macrophages contributes to increased tumor necrosis factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease. J Biol Chem, 286(2):1436–1444. https://doi.org/10.1074/jbc.M110.145870

  5. Banerjee S, Xie N, Cui HC, et al., 2013a. MicroRNA let-7c regulates macrophage polarization. J Immunol, 190(12): 6542–6549. https://doi.org/10.4049/jimmunol.1202496

  6. Banerjee S, Cui HC, Xie N, et al., 2013b. miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem, 288(49):35428–35436. https://doi.org/10.1074/jbc.M112.426866

  7. Batool A, Wang YQ, Hao XX, et al., 2018. A miR-125b/CSF1-CX3CL1/tumor-associated macrophage recruitment axis controls testicular germ cell tumor growth. Cell Death Dis, 9(10):962. https://doi.org/10.1038/s41419-018-1021-z

  8. Binenbaum Y, Fridman E, Yaari Z, et al., 2018. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res, 78(18):5287–5299. https://doi.org/10.1158/0008-5472.CAN-18-0124

  9. Boldin MP, Taganov KD, Rao DS, et al., 2011. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med, 208(6):1189–1201. https://doi.org/10.1084/jem.20101823

  10. Chafin CB, Regna NL, Caudell DL, et al., 2014. MicroRNA-let-7a promotes E2F-mediated cell proliferation and NFkB activation in vitro. Cell Mol Immunol, 11(1):79–83. https://doi.org/10.1038/cmi.2013.51

  11. Chai ZT, Zhu XD, Ao JY, et al., 2015. MicroRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma. J Hematol Oncol, 8:56. https://doi.org/10.1186/s13045-015-0150-4

  12. Challagundla KB, Wise PM, Neviani P, et al., 2015. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst, 107(7):djv135. https://doi.org/10.1093/jnci/djv135

  13. Chaudhuri AA, So AYL, Sinha N, et al., 2011. MicroRNA-125b potentiates macrophage activation. J Immunol, 187(10):5062–5068. https://doi.org/10.4049/jimmunol.1102001

  14. Chen X, Ying X, Wang XJ, et al., 2017. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep, 38(1):522–528. https://doi.org/10.3892/or.2017.5697

  15. Chen Y, Wang SX, Mu R, et al., 2014. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer. Cell Rep, 7(6):1982–1993. https://doi.org/10.1016/j.celrep.2014.05.007

  16. Cooks T, Pateras IS, Jenkins LM, et al., 2018. Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246. Nat Commun, 9(1): 771. https://doi.org/10.1038/s41467-018-03224-w

  17. Cortez-Retamozo V, Etzrodt M, Newton A, et al., 2012. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA, 109(7):2491–2496. https://doi.org/10.1073/pnas.1113744109

  18. Curtale G, 2018. MiRNAs at the crossroads between innate immunity and cancer: focus on macrophages. Cells, 7(2):12. https://doi.org/10.3390/cells7020012

  19. Curtale G, Mirolo M, Renzi TA, et al., 2013. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA, 110(28): 11499–11504. https://doi.org/10.1073/pnas.1219852110

  20. Dean M, Fojo T, Bates S, 2005. Tumour stem cells and drug resistance. Nat Rev Cancer, 5(4):275–284. https://doi.org/10.1038/nrc1590

  21. el Andaloussi S, Mäger I, Breakefield XO, et al., 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov, 12(5):347–357. https://doi.org/10.1038/nrd3978

  22. el Gazzar M, Church A, Liu TF, et al., 2011. MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-α during TLR4-induced gene reprogramming. J Leukoc Biol, 90(3):509–519. https://doi.org/10.1189/jlb.0211074

  23. Etzrodt M, Cortez-Retamozo V, Newton A, et al., 2012. Regulation of monocyte functional heterogeneity by miR-146a and Relb. Cell Rep, 1(4):317–324. https://doi.org/10.1016/j.celrep.2012.02.009

  24. Fabbri M, Paone A, Calore F, et al., 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA, 109(31):E2110–E2116. https://doi.org/10.1073/pnas.1209414109

  25. Fortunato O, Borzi C, Milione M, et al., 2019. Circulating miR-320a promotes immunosuppressive macrophages M2 phenotype associated with lung cancer risk. Int J Cancer, 144(11):2746–2761. https://doi.org/10.1002/ijc.31988

  26. Frank AC, Ebersberger S, Fink AF, et al., 2019. Apoptotic tumor cell-derived microRNA-375 uses CD36 to alter the tumor-associated macrophage phenotype. Nat Commun, 10(1):1135. https://doi.org/10.1038/s41467-019-08989-2

  27. Franklin RA, Liao W, Sarkar A, et al., 2014. The cellular and molecular origin of tumor-associated macrophages. Science, 344(6186):921–925. https://doi.org/10.1126/science.1252510

  28. Funahashi Y, Kato N, Masuda T, et al., 2019. miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. Lab Invest, 99(8):1130–1142. https://doi.org/10.1038/s41374-019-0190-4

  29. Geissmann F, Manz MG, Jung S, et al., 2010. Development of monocytes, macrophages, and dendritic cells. Science, 327(5966):656–661. https://doi.org/10.1126/science.1178331

  30. Ghani S, Riemke P, Schönheit J, et al., 2011. Macrophage development from HSCs requires PU.1-coordinated microRNA expression. Blood, 118(8):2275–2284. https://doi.org/10.1182/blood-2011-02-335141

  31. Guerriero JL, 2018. Macrophages: the road less traveled, changing anticancer therapy. Trends Mol Med, 24(5):472–489. https://doi.org/10.1016/j.molmed.2018.03.006

  32. Guo J, Liu C, Wang W, et al., 2018. Identification of serum miR-1915-3p and miR-455-3p as biomarkers for breast cancer. PLoS ONE, 13(7):e0200716. https://doi.org/10.1371/journal.pone.0200716

  33. Ha MJ, Kim VN, 2014. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15(8):509–524. https://doi.org/10.1038/nrm3838

  34. He M, Xu ZQ, Ding T, et al., 2009. MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPβ. Cell Mol Immunol, 6(5):343–352. https://doi.org/10.1038/cmi.2009.45

  35. Hsieh CH, Tai SK, Yang MH, 2018. Snail-overexpressing cancer cells promote M2-like polarization of tumor-associated macrophages by delivering miR-21-abundant exosomes. Neoplasia, 20(8):775–788. https://doi.org/10.1016/j.neo.2018.06.004

  36. Hsu YL, Hung JY, Chang WA, et al., 2018. Hypoxic lung-cancer-derived extracellular vesicle microRNA-103a increases the oncogenic effects of macrophages by targeting PTEN. Mol Ther, 26(2):568–581. https://doi.org/10.1016/j.ymthe.2017.11.016

  37. Huang F, Zhao JL, Wang L, et al., 2017. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages. Front Immunol, 8:1327. https://doi.org/10.3389/fimmu.2017.01327

  38. Ismail N, Wang YJ, Dakhlallah D, et al., 2013. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood, 121(6):984–995. https://doi.org/10.1182/blood-2011-08-374793

  39. Jang JY, Lee JK, Jeon YK, et al., 2013. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer, 13:421. https://doi.org/10.1186/1471-2407-13-421

  40. Kanlikilicer P, Bayraktar R, Denizli M, et al., 2018. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer. EBioMedicine, 38:100–112. https://doi.org/10.1016/j.ebiom.2018.11.004

  41. Kumar M, Sahu SK, Kumar R, et al., 2015. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe, 17(3):345–356. https://doi.org/10.1016/j.chom.2015.01.007

  42. Lan JQ, Sun L, Xu F, et al., 2019. M2 macrophage-derived exosomes promote cell migration and invasion in colon cancer. Cancer Res, 79(1):146–158. https://doi.org/10.1158/0008-5472.CAN-18-0014

  43. Li D, Duan MY, Feng Y, et al., 2016. MiR-146a modulates macrophage polarization in systemic juvenile idiopathic arthritis by targeting INHBA. Mol Immunol, 77:205–212. https://doi.org/10.1016/j.molimm.2016.08.007

  44. Li L, Sun PF, Zhang CS, et al., 2018. MiR-98 suppresses the effects of tumor-associated macrophages on promoting migration and invasion of hepatocellular carcinoma cells by regulating IL-10. Biochimie, 150:23–30. https://doi.org/10.1016/j.biochi.2018.04.016

  45. Li N, Qin JF, Han X, et al., 2018. miR-21a negatively modulates tumor suppressor genes PTEN and miR-200c and further promotes the transformation of M2 macrophages. Immunol Cell Biol, 96(1):68–80. https://doi.org/10.1111/imcb.1016

  46. Lin L, Lin HB, Wang L, et al., 2015. miR-130a regulates macrophage polarization and is associated with non-small cell lung cancer. Oncol Rep, 34(6):3088–3096. https://doi.org/10.3892/or.2015.4301

  47. Lin XB, Wang SY, Sun M, et al., 2019. miR-195-5p/NOTCH2-mediated EMT modulates IL-4 secretion in colorectal cancer to affect M2-like TAM polarization. J Hematol Oncol, 12(1):20. https://doi.org/10.1186/s13045-019-0708-7

  48. Liu JT, Fan LL, Yu HQ, et al., 2019. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology, 70(1):241–258. https://doi.org/10.1002/hep.30607

  49. Lu S, Gao Y, Huang XL, et al., 2014. Cantharidin exerts antihepatocellular carcinoma by miR-214 modulating macrophage polarization. Int J Biol Sci, 10(4):415–425. https://doi.org/10.7150/ijbs.8002

  50. Martinez FO, Gordon S, 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 6:13. https://doi.org/10.12703/P6-13

  51. Mathsyaraja H, Thies K, Taffany DA, et al., 2015. CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene, 34(28):3651–3661. https://doi.org/10.1038/onc.2014.294

  52. Movahedi K, Laoui D, Gysemans C, et al., 2010. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res, 70(14):5728–5739. https://doi.org/10.1158/0008-5472.CAN-09-4672

  53. Murray PJ, 2017. Macrophage polarization. Annu Rev Physiol, 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

  54. Nahid MA, Pauley KM, Satoh M, et al., 2009. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity. J Biol Chem, 284(50):34590–34599. https://doi.org/10.1074/jbc.M109.056317

  55. Nazari-Jahantigh M, Wei YY, Noels H, et al., 2012. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest, 122(11):4190–4202. https://doi.org/10.1172/JCI61716

  56. Nilsson S, Moller C, Jirström K, et al., 2012. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS ONE, 7(4):e36051. https://doi.org/10.1371/journal.pone.0036051

  57. Noy R, Pollard JW, 2014. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41(1):49–61. https://doi.org/10.1016/j.immuni.2014.06.010

  58. O’Connell RM, Chaudhuri AA, Rao DS, et al., 2009. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA, 106(17):7113–7118. https://doi.org/10.1073/pnas.0902636106

  59. Ouimet M, Ediriweera HN, Gundra UM, et al., 2015. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest, 125(12):4334–4348. https://doi.org/10.1172/JCI81676

  60. Parayath NN, Parikh A, Amiji MM, 2018. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett, 18(6):3571–3579. https://doi.org/10.1021/acs.nanolett.8b00689

  61. Park JE, Dutta B, Tse SW, et al., 2019. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene, 38(26):5158–5173. https://doi.org/10.1038/s41388-019-0782-x

  62. Price NL, Rotllan N, Zhang XB, et al., 2019. Specific disruption of abca1 targeting largely mimics the effects of miR-33 knockout on macrophage cholesterol efflux and atherosclerotic plaque development. Circ Res, 124(6): 874–880. https://doi.org/10.1161/CIRCRESAHA.118.314415

  63. Ran D, Shia WJ, Lo MC, et al., 2013. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood, 121(15):2882–2890. https://doi.org/10.1182/blood-2012-08-451641

  64. Robbins PD, Morelli AE, 2014. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol, 14(3): 195–208. https://doi.org/10.1038/nri3622

  65. Rosa A, Ballarino M, Sorrentino A, et al., 2007. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA, 104(50):19849–19854. https://doi.org/10.1073/pnas.0706963104

  66. Roush S, Slack FJ, 2008. The let-7 family of microRNAs. Trends Cell Biol, 18(10):505–516. https://doi.org/10.1016/j.tcb.2008.07.007

  67. Schmid MC, Khan SQ, Kaneda MM, et al., 2018. Integrin CD11b activation drives anti-tumor innate immunity. Nat Commun, 9(1):5379. https://doi.org/10.1038/s41467-018-07387-4

  68. Schwarzenbach H, Nishida N, Calin GA, et al., 2014. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol, 11(3):145–156. https://doi.org/10.1038/nrclinonc.2014.5

  69. Selimoglu-Buet D, Rivière J, Ghamlouch H, et al., 2018. A miR-150/TET3 pathway regulates the generation of mouse and human non-classical monocyte subset. Nat Commun, 9(1):5455. https://doi.org/10.1038/s41467-018-07801-x

  70. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al., 2010. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol, 11(2):141–147. https://doi.org/10.1038/ni.1828

  71. Shidal C, Singh NP, Nagarkatti P, et al., 2019. MicroRNA-92 expression in CD133+ melanoma stem cells regulates immunosuppression in the tumor microenvironment via integrin-dependent activation of TGFβ. Cancer Res, 79(14):3622–3635. https://doi.org/10.1158/0008-5472.CAN-18-2659

  72. Sonda N, Simonato F, Peranzoni E, et al., 2013. miR-142-3p prevents macrophage differentiation during cancer-induced myelopoiesis. Immunity, 38(6):1236–1249. https://doi.org/10.1016/j.immuni.2013.06.004

  73. Squadrito ML, Pucci F, Magri L, et al., 2012. miR-511-3p modulates genetic programs of tumor-associated macrophages. Cell Rep, 1(2):141–154. https://doi.org/10.1016/j.celrep.2011.12.005

  74. Su SC, Zhao QY, He CH, et al., 2015. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun, 6:8523. https://doi.org/10.1038/ncomms9523

  75. Suarez-Carmona M, Lesage J, Cataldo D, et al., 2017. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol, 11(7):805–823. https://doi.org/10.1002/1878-0261.12095

  76. Takano Y, Masuda T, Iinuma H, et al., 2017. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget, 8(45):78598–78613. https://doi.org/10.18632/oncotarget.20009

  77. Talekar M, Trivedi M, Shah P, et al., 2016. Combination wt-p53 and microRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles. Mol Ther, 24(4):759–769. https://doi.org/10.1038/mt.2015.225

  78. Théry C, Ostrowski M, Segura E, 2009. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol, 9(8): 581–593. https://doi.org/10.1038/nri2567

  79. Tian YJ, Matsui S, Touma M, et al., 2018. MicroRNA-342 inhibits tumor growth via targeting chemokine CXCL12 involved in macrophages recruitment/activation. Genes Cells, 23(12):1009–1022. https://doi.org/10.1111/gtc.12650

  80. Tili E, Michaille JJ, Cimino A, et al., 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol, 179(8): 5082–5089. https://doi.org/10.4049/jimmunol.179.8.5082

  81. Wang P, Hou J, Lin L, et al., 2010. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol, 185(10):6226–6233. https://doi.org/10.4049/jimmunol.1000491

  82. Wang P, Xu LJ, Qin JJ, et al., 2018. MicroRNA-155 inversely correlates with esophageal cancer progression through regulating tumor-associated macrophage FGF2 expression. Biochem Biophys Res Commun, 503(2):452–458. https://doi.org/10.1016/j.bbrc.2018.04.094

  83. Wang W, Liu Y, Guo J, et al., 2018. miR-100 maintains phenotype of tumor-associated macrophages by targeting mTOR to promote tumor metastasis via Stat5a/IL-1ra pathway in mouse breast cancer. Oncogenesis, 7(12):97. https://doi.org/10.1038/s41389-018-0106-y

  84. Wang XF, Luo GT, Zhang KD, et al., 2018. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res, 78(16):4586–4598. https://doi.org/10.1158/0008-5472.CAN-17-3841

  85. Wang YF, Wang BY, Xiao S, et al., 2019. miR-125a/b inhibits tumor-associated macrophages mediated in cancer stem cells of hepatocellular carcinoma by targeting CD90. J Cell Biochem, 120(3):3046–3055. https://doi.org/10.1002/jcb.27436

  86. Wang Z, Brandt S, Medeiros A, et al., 2015. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS ONE, 10(2):e0115855. https://doi.org/10.1371/journal.pone.0115855

  87. Wei YY, Schober A, 2016. MicroRNA regulation of macrophages in human pathologies. Cell Mol Life Sci, 73(18): 3473–3495. https://doi.org/10.1007/s00018-016-2254-6

  88. West MA, Heagy W, 2002. Endotoxin tolerance: a review. Crit Care Med, 30(1):S64–S73.

  89. Wilson WR, Hay MP, 2011. Targeting hypoxia in cancer therapy. Nat Rev Cancer, 11(6):393–410. https://doi.org/10.1038/nrc3064

  90. Xi JJ, Huang Q, Wang L, et al., 2018. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene, 37(23):3151–3165. https://doi.org/10.1038/s41388-018-0178-3

  91. Yang J, Zhang Z, Chen C, et al., 2014. MicroRNA-19a-3p inhibits breast cancer progression and metastasis by inducing macrophage polarization through downregulated expression of Fra-1 proto-oncogene. Oncogene, 33(23): 3014–3023. https://doi.org/10.1038/onc.2013.258

  92. Yang M, Chen JQ, Su F, et al., 2011. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer, 10:117. https://doi.org/10.1186/1476-4598-10-117

  93. Yao ZY, Chen WB, Shao SS, et al., 2018. Role of exosome-associated microRNA in diagnostic and therapeutic applications to metabolic disorders. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(3):183–198. https://doi.org/10.1631/jzus.B1600490

  94. Ye JS, Guo RW, Shi YK, et al., 2016. miR-155 regulated inflammation response by the SOCS1-STAT3-PDCD4 axis in atherogenesis. Mediators Inflamm, 2016:8060182. https://doi.org/10.1155/2016/8060182

  95. Yin Y, Yao SR, Hu YL, et al., 2017. The immunemicroenvironment confers chemoresistance of colorectal cancer through macrophage-derived IL6. Clin Cancer Res, 23(23):7375–7387. https://doi.org/10.1158/1078-0432.CCR-17-1283

  96. Ying X, Wu QF, Wu XL, et al., 2016. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget, 7(28):43076–43087. https://doi.org/10.18632/oncotarget.9246

  97. Yona S, Kim KW, Wolf Y, et al., 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity, 38(1):79–91. https://doi.org/10.1016/j.immuni.2012.12.001

  98. Zhang J, Shan WF, Jin TT, et al., 2014. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from macrophage to cancer cells. J Transl Med, 12:279. https://doi.org/10.1186/s12967-014-0279-x

  99. Zhang W, Liu H, Liu W, et al., 2015. Polycomb-mediated loss of microRNA let-7c determines inflammatory macrophage polarization via PAK1-dependent NF-κB pathway. Cell Death Differ, 22(2):287–297. https://doi.org/10.1038/cdd.2014.142

  100. Zhao HM, Wang XS, Yi P, et al., 2017. KSRP specifies monocytic and granulocytic differentiation through regulating miR-129 biogenesis and RUNX1 expression. Nat Commun, 8(1):1428. https://doi.org/10.1038/s41467-017-01425-3

  101. Zhao JL, Huang F, He F, et al., 2016. Forced activation of Notch in macrophages represses tumor growth by upregulating miR-125a and disabling tumor-associated macrophages. Cancer Res, 76(6):1403–1415. https://doi.org/10.1158/0008-5472.CAN-15-2019

  102. Zhao Y, Zou WL, Du JF, et al., 2018. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J Cell Physiol, 233(10):6425–6439. https://doi.org/10.1002/jcp.26461

  103. Zheng PM, Chen L, Yuan XL, et al., 2017. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res, 36(1):53. https://doi.org/10.1186/s13046-017-0528-y

  104. Zhou HB, Huang XF, Cui HJ, et al., 2010. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood, 116(26):5885–5894. https://doi.org/10.1182/blood-2010-04-280156

  105. Zhou JR, Li XD, Wu XL, et al., 2018. Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res, 6(12):1578–1592. https://doi.org/10.1158/2326-6066.CIR-17-0479

  106. Zhou SL, Hu ZQ, Zhou ZJ, et al., 2016. miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis. Hepatology, 63(5):1560–1575. https://doi.org/10.1002/hep.28445

  107. Zhu XL, Shen HL, Yin XM, et al., 2019. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res, 38(1):81. https://doi.org/10.1186/s13046-019-1095-1

Download references

Author information

Chong CHEN and Jia-ming LIU wrote and edited the manuscript. Yun-ping LUO edited and checked the final version. All authors read and approved the final manuscript.

Correspondence to Yun-ping Luo.

Ethics declarations

Chong CHEN, Jia-ming LIU, and Yun-ping LUO declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 81972795 and 1672914)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Liu, J. & Luo, Y. MicroRNAs in tumor immunity: functional regulation in tumor-associated macrophages. J. Zhejiang Univ. Sci. B 21, 12–28 (2020) doi:10.1631/jzus.B1900452

Download citation

Key words

  • MicroRNA
  • Tumor microenvironment
  • Tumor-associated macrophage
  • Functional polarization

关键词

  • MicroRNA
  • 肿瘤微环境
  • 肿瘤相关巨噬细胞
  • 功能性极化

CLC number

  • R730.2