Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 12, pp 983–994 | Cite as

Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB

  • Zi-yue Li
  • Qing-ting Bu
  • Jue Wang
  • Yu Liu
  • Xin-ai Chen
  • Xu-ming Mao
  • Yong-Quan LiEmail author
Article
  • 2 Downloads

Abstract

Genome sequencing projects revealed massive cryptic gene clusters encoding the undiscovered secondary metabolites in Streptomyces. To investigate the metabolic products of silent gene clusters in Streptomyces chattanoogensis L10 (CGMCC 2644), we used site-directed mutagenesis to generate ten mutants with point mutations in the highly conserved region of rpsL (encoding the ribosomal protein S12) or rpoB (encoding the RNA polymerase β-subunit). Among them, L10/RpoB (H437Y) accumulated a dark pigment on a yeast extract-malt extract-glucose (YMG) plate. This was absent in the wild type. After further investigation, a novel angucycline antibiotic named anthrachamycin was isolated and determined using nuclear magnetic resonance (NMR) spectroscopic techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and electrophoretic mobility shift assay (EMSA) were performed to investigate the mechanism underlying the activation effect on the anthrachamycin biosynthetic gene cluster. This work indicated that the rpoB-specific missense H437Y mutation had activated anthrachamycin biosynthesis in S. chattanoogensis L10. This may be helpful in the investigation of the pleiotropic regulation system in Streptomyces.

Key words

Streptomyces Cryptic gene cluster Site-directed mutagenesis Secondary metabolism 

恰塔努加链霉菌 L10 中 roB 基因突变激活蒽塔 恰霉素生物合成基因簇的研究

概要

目 的

运用核糖体技术激活恰塔努加链霉菌 Streptomyces chattanoogensis L10 中的隐性基因簇, 进一步研 究突变菌株的次级代谢产物并初步探索其对应 的生物合成基因簇激活机制。

创新点

首次分离得到了蒽塔恰霉素, 并初步探索了 RpoB 突变株中蒽塔恰霉素生物合成基因簇的激活机 制。

方 法

采用核糖体工程技术, 对 S. chattanoogensis L10 的 RpsL 和 RpoB 的高度保守区域定点突变, 使用 高效液相色谱法 (HPLC) 检测突变株的代谢产 物。运用一维和二维核磁共振 (1D NMR, 2D NMR) 解析 L10/RpoB (H437Y) 的次级代谢产 物蒽塔恰霉素的化学结构, 通过铁离子还原法 (FRAP) 和 ABTS 自由基清除等实验研究其抗 氧化活性。采用实时荧光定量聚合酶链式反应 (qRT-PCR) 和凝胶电泳迁移率分析 (EMSA) 探索蒽塔恰霉素生物合成基因簇的激活机制。

结 论

L10/RpoB (H437Y) 中蒽塔恰霉素的生物合成基因 簇被激活。 qRT-PCR 和 EMSA 结果表明: RNA 聚合酶β 亚基结构改变, 可能影响全局性调控基 因的转录水平, 并激活蒽塔恰霉素生物合成基因 簇。

关键词

链霉菌 隐性基因簇 定点突变 次级代谢产物 

CLC number

Q756 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Contributors

Zi-yue LI, Qing-ting BU, Jue WANG, and Yu LIU performed the experiments. Zi-yue LI and Qing-ting BU wrote the manuscript. Xin-ai CHEN, Xu-ming MAO, and Yong-Quan LI revised the manuscript. All authors read and approved the final manuscript. Therefore, all authors had full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Zi-yue LI, Qing-ting BU, Jue WANG, Yu LIU, Xin-ai CHEN, Xu-ming MAO, and Yong-Quan LI declare that they have no conflict of interest.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11585_2019_387_MOESM1_ESM.pdf (784 kb)
Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB

References

  1. Bao J, He F, Li YM, et al., 2018. Cytotoxic antibiotic angucyclines and actinomycins from the Streptomyces sp. XZHG99T. J Antibiot (Tokyo) 71(12): 1018–1024.  https://doi.org/10.1038/s41429-018-0096-1 CrossRefGoogle Scholar
  2. Bao T, Wang Y, Li YT, et al., 2016. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 17(12): 941–951.  https://doi.org/10.1631/jzus.B1600243 CrossRefGoogle Scholar
  3. Bérdy J, 2005. Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1): 1–26.  https://doi.org/10.1038/ja.2005.1 CrossRefGoogle Scholar
  4. Chen JW, Wu QH, Hawas UW, et al., 2016. Genetic regulation and manipulation for natural product discovery. Appl Microbiol Biotechnol 100(7): 2953–2965.  https://doi.org/10.1007/s00253-016-7357-3 PubMedCrossRefGoogle Scholar
  5. Craney A, Ahmed S, Nodwell J, 2013. Towards a new science of secondary metabolism. J Antibiot (Tokyo) 66(7): 387–400.  https://doi.org/10.1038/ja.2013.25 CrossRefGoogle Scholar
  6. Demain AL, 2014. Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41(12): 185–201.  https://doi.org/10.1007/s10295-013-1325-z PubMedCrossRefGoogle Scholar
  7. Du YL, Shen XL, Yu P, et al., 2011. Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 77(23): 8415–8426.  https://doi.org/10.1128/AEM.05898-11 PubMedPubMedCentralCrossRefGoogle Scholar
  8. El-Toumy SA, El Souda SS, Mohamed TK, et al., 2012. Anthraquinone glycosides from Cassia roxburghii and evaluation of its free radical scavenging activity. Carbohydr Res 360: 47–51.  https://doi.org/10.1016/j.carres.2012.07.020 PubMedCrossRefGoogle Scholar
  9. Erel O, 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4): 277–285.  https://doi.org/10.1016/j.clinbiochem.2003.11.015 PubMedCrossRefPubMedCentralGoogle Scholar
  10. Floegel A, Kim DO, Chung SJ, et al., 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J Food Compos Anal 24(7): 1043–1048.  https://doi.org/10.1016/j.jfca.2011.01.008 CrossRefGoogle Scholar
  11. Francis GW, Aksnes DW, Holt Ø, 1998. Assignment of the 1H and 13C NMR spectra of anthraquinone glycosides from Rhamnus frangula. Magn Reson Chem 36(10): 769–772.  https://doi.org/10.1002/(SICI)1097-458X(1998100)36:10<769::AID-OMR361>3.0.CO;2-E CrossRefGoogle Scholar
  12. Fu P, Jamison M, La S, et al., 2014. Inducamides A-C, chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp. Org Lett 16(21): 5656–5659.  https://doi.org/10.1021/ol502731p PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gomez-Escribano JP, Bibb MJ, 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4(2): 207–215.  https://doi.org/10.1111/j.1751-7915.2010.00219.x PubMedPubMedCentralCrossRefGoogle Scholar
  14. Grkovic T, Abdelmohsen UR, Othman EM, et al., 2014. Two new antioxidant actinosporin analogues from the calcium alginate beads culture of sponge-associated Actinokineospora sp. strain EG49. Bioorg Med Chem Lett 24(21): 5089–5092.  https://doi.org/10.1016/j.bmcl.2014.08.068 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Guo YY, Li H, Zhou ZX, et al., 2015. Identification and biosynthetic characterization of natural aromatic azoxy products from Streptomyces chattanoogensis L10. Org Lett 17(24): 6114–6117.  https://doi.org/10.1021/acs.orglett.5b03137 PubMedCrossRefPubMedCentralGoogle Scholar
  16. Guo ZK, Liu SB, Jiao RH, et al., 2012. Angucyclines from an insect-derived actinobacterium Amycolatopsis sp. HCa1 and their cytotoxic activity. Bioorg Med Chem Lett 22(24): 7490–7493.  https://doi.org/10.1016/j.bmcl.2012.10.048 PubMedCrossRefPubMedCentralGoogle Scholar
  17. Hesketh A, Sun J, Bibb M, 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 39(1): 136–144.  https://doi.org/10.1046/j.1365-2958.2001.02221.x PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hopwood DA, 2006. Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40: 1–23.  https://doi.org/10.1146/annurev.genet.40.110405.090639 PubMedCrossRefGoogle Scholar
  19. Hu HF, Zhang Q, Ochi K, 2002. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase β subunit) of Streptomyces lividans. J Bacteriol 184(14): 3984–3991.  https://doi.org/10.1128/JB.184.14.3984-3991.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Inaoka T, Takahashi K, Yada H, et al., 2004. RNA polymerase mutation activates the production of a dormant antibiotic 3,3′-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis. J Biol Chem 279(5): 3885–3892.  https://doi.org/10.1074/jbc.M309925200 PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kharel MK, Pahari P, Shepherd MD, et al., 2012. Angucyclines: biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 29(2): 264–325.  https://doi.org/10.1039/c1np00068c PubMedCrossRefPubMedCentralGoogle Scholar
  22. Komatsu M, Uchiyama T, Omura S, et al., 2010. Genomeminimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107(6): 2646–2651.  https://doi.org/10.1073/pnas.0914833107 PubMedCrossRefGoogle Scholar
  23. Liu SP, Yu P, Yuan PH, et al., 2015. Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Appl Microbiol Biotechnol 99(6): 2715–2726.  https://doi.org/10.1007/s00253-014-6307-1 PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lombó F, Abdelfattah MS, Braña AF, et al., 2009. Elucidation of oxygenation steps during oviedomycin biosynthesis and generation of derivatives with increased antitumor activity. ChemBioChem 10(2): 296–303.  https://doi.org/10.1002/cbic.200800425 PubMedPubMedCentralCrossRefGoogle Scholar
  25. López-Garcia MT, Santamarta I, Liras P, 2010. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology 156(8): 2354–2365.  https://doi.org/10.1099/mic0.035956-0 PubMedCrossRefGoogle Scholar
  26. Ma M, Rateb ME, Teng QH, et al., 2015. Angucyclines and angucyclinones from Streptomyces sp. CB01913 featuring C-ring cleavage and expansion. J Nat Prod 78(10): 2471–2480.  https://doi.org/10.1021/acs.jnatprod.5b00601 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Makino K, Amemura M, Kawamoto T, et al., 1996. DNA binding of PhoB and its interaction with RNA polymerase. J Mol Biol 259(1): 15–26.  https://doi.org/10.1006/jmbi.1996.0298 PubMedCrossRefGoogle Scholar
  28. Mao XM, Luo S, Zhou RC, et al., 2015. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 290(12): 7992–8001.  https://doi.org/10.1074/jbc.M114.608273 PubMedCrossRefGoogle Scholar
  29. Martínez-Hackert E, Stock AM, 1997. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5(1): 109–124.  https://doi.org/10.1016/S0969-2126(97)00170-6 PubMedCrossRefPubMedCentralGoogle Scholar
  30. Moore BS, 2008. Extending the biosynthetic repertoire in ribosomal peptide assembly. Angew Chem Int Ed Engl 47(49): 9386–9388.  https://doi.org/10.1002/anie.200803868 PubMedCrossRefGoogle Scholar
  31. Muth G, Nußbaumer B, Wohlleben W, et al., 1989. A vector system with temperature-sensitive replication for gene disruption and mutational cloning in streptomycetes. Mol Gen Genet 219(3): 341–348.  https://doi.org/10.1007/bf00259605 CrossRefGoogle Scholar
  32. Nett M, Ikeda H, Moore BS, 2009. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11): 1362–1384.  https://doi.org/10.1039/b817069j PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ochi K, 2017. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J Antibiot (Tokyo) 70: 25–40.  https://doi.org/10.1038/ja.2016.82 CrossRefGoogle Scholar
  34. Ohnishi Y, Kameyama S, Onaka H, et al., 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34(1): 102–111.  https://doi.org/10.1046/j.1365-2958.1999.01579.x PubMedCrossRefGoogle Scholar
  35. Okamoto-Hosoya Y, Okamoto S, Ochi K, 2003. Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Appl Environ Microbiol 69(7): 4256–4259.  https://doi.org/10.1128/aem.69.7.4256-4259.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Rebets Y, Ostash B, Luzhetskyy A, et al., 2003. Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222(1): 149–153.  https://doi.org/10.1016/S0378-1097(03)00258-1 PubMedCrossRefGoogle Scholar
  37. Rebets Y, Ostash B, Luzhetskyy A, et al., 2005. DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology 151(1): 281–290.  https://doi.org/10.1099/mic0.27244-0 PubMedCrossRefGoogle Scholar
  38. Rebets Y, Dutko L, Ostash B, et al., 2008. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 189(2): 111–120.  https://doi.org/10.1007/s00203-007-0299-5 PubMedCrossRefGoogle Scholar
  39. Staunton J, Weissman KJ, 2001. Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4): 380–416.  https://doi.org/10.1039/a909079g PubMedCrossRefGoogle Scholar
  40. Tanaka Y, Kasahara K, Hirose Y, et al., 2013. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J Bacteriol 195(13): 2959–2970.  https://doi.org/10.1128/JB.00147-13 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Wang GJ, Hosaka T, Ochi K, 2008. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol 74(9): 2834–2840.  https://doi.org/10.1128/AEM.02800-07 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Wang TJ, Shan YM, Li H, et al., 2017. Multiple transporters are involved in natamycin efflux in Streptomyces chattanoogensis L10. Mol Microbiol 103(4): 713–728.  https://doi.org/10.1111/mmi.13583 PubMedCrossRefPubMedCentralGoogle Scholar
  43. Yang KQ, Han L, He JY, et al., 2001. A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279(2): 165–173.  https://doi.org/10.1016/S0378-1119(01)00723-5 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Yu P, Liu SP, Bu QT, et al., 2014. WblAch, a pivotal activator of natamycin biosynthesis and morphological differentiation in Streptomyces chattanoogensis L10, is positively regulated by AdpAch. Appl Environ Microbiol 80(22): 6879–6887.  https://doi.org/10.1128/AEM.01849-14 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Yushchuk O, Ostash I, Vlasiuk I, et al., 2018. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Appl Microbiol Biotechnol 102(19): 8419–8428.  https://doi.org/10.1007/s00253-018-9249-1 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Zhou ZX, Xu QQ, Bu QT, et al., 2015. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis. ChemBioChem 16(3): 496–502.  https://doi.org/10.1002/cbic.201402577 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
  3. 3.College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations