Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 6, pp 513–527 | Cite as

Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots

  • Jian-li Yang
  • Wei Fan
  • Shao-jian ZhengEmail author
Review

Abstract

Aluminum (Al) is the most abundant metal element in the earth’s crust. On acid soils, at pH 5.5 or lower, part of insoluble Al-containing minerals become solubilized into soil solution, with resultant highly toxic effects on plant growth and development. Nevertheless, some plants have developed Al-tolerance mechanisms that enable them to counteract this Al toxicity. One such well-documented mechanism is the Al-induced secretion of organic acid anions, including citrate, malate, and oxalate, from plant roots. Once secreted, these anions chelate external Al ions, thus protecting the secreting plant from Al toxicity. Genes encoding the citrate and malate transporters responsible for secretion have been identified and characterized, and accumulating evidence indicates that regulation of the expression of these transporter genes is critical for plant Al tolerance. In this review, we outline the recent history of research into plant Al-tolerance mechanisms, with special emphasis on the physiology of Al-induced secretion of organic acid anions from plant roots. In particular, we summarize the identification of genes encoding organic acid transporters and review current understanding of genes regulating organic acid secretion. We also discuss the possible signaling pathways regulating the expression of organic acid transporter genes.

Key words

Acid soil Aluminum (Al) toxicity Expression regulation Organic acid anion Transporter 

铝诱导植物根系分泌有机酸阴离子的机理及其 调控

概要

铝是地壳中最丰富的金属元素。在pH 低于5.5 的酸性土壤中,部分含铝矿物中的铝会溶解进入 土壤溶液, 严重危害植物的生长和发育。一些植 物能够进化出耐铝机理以制抵抗铝毒害。其中, 铝诱导根系分泌有机酸阴离子(包括柠檬酸、苹 果酸和草酸)是证据最确凿的机理之一。分泌到 胞外的有机酸阴离子可以通过螯合作用解除铝 毒。编码铝诱导柠檬酸和苹果酸阴离子分泌的转 运蛋白基因已被鉴定。同时, 众多证据表明这些 基因的表达调控与植物耐铝性密切相关。本文概 述了近年来植物耐铝机理, 特别是铝诱导植物根 系分泌有机酸阴离子的生理机制的研究进展。重 点总结了编码有机酸转运蛋白基因的鉴定, 以及 对这些基因表达调控的理解。本文也对调控有机 酸转运蛋白基因表达的可能的信号通路作了讨 论, 并提出了该领域的研究展望。

关键词

酸性土壤 铝毒 表达调控 有机酸阴离子 转运蛋白 

CLC number

Q945.78 

Notes

Acknowledgments

Thanks are given to Prof. Nicholas P. HARBERD from the University of Oxford (UK) for polishing the English.

References

  1. Aguilera JG, Minozzo JAD, Barichello D, et al., 2016. Alleles of organic acid transporter genes are highly correlated with wheat resistance to acidic soil in field conditions. Theor Appl Genet, 129(7):1317–1331.  https://doi.org/10.1007/s00122-016-2705-3 CrossRefPubMedGoogle Scholar
  2. Barceló J, Poschenrieder C, 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot, 48(1):75–92.  https://doi.org/10.1016/S0098-8472(02)00013-8 CrossRefGoogle Scholar
  3. Che J, Tsutsui T, Yokosho K, et al., 2018. Functional characterization of an aluminum (Al)-inducible transcription factor, ART2, revealed a different pathway for Al tolerance in rice. New Phytol, 220(1):209–218.  https://doi.org/10.1111/nph.15252 CrossRefPubMedGoogle Scholar
  4. Chen PY, Sjogren CA, Larsen PB, et al., 2019. A multi-level response to DNA damage induced by aluminium. Plant J, in press.  https://doi.org/10.1111/tpj.14231
  5. Chen Q, Wu KH, Wang P, et al., 2013. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco. Plant Mol Biol Rep, 31(3):769–774.  https://doi.org/10.1007/s11105-012-0543-2 CrossRefGoogle Scholar
  6. Chen WW, Fan W, Lou HQ, et al., 2017. Regulating cytoplasmic oxalate homeostasis by Acyl activating enzyme3 is critical for plant Al tolerance. Plant Signal Behav, 12(1):e1276688.  https://doi.org/10.1080/15592324.2016.1276688 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen ZC, Yokosho K, Kashino M, et al., 2013. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus. Plant J, 76(1):10–23.  https://doi.org/10.1111/tpj.12266 PubMedGoogle Scholar
  8. Collins NC, Shirley NJ, Saeed M, et al., 2008. An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics, 179(1):669–682.  https://doi.org/10.1534/genetics.107.083451 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daspute AA, Kobayashi Y, Panda SK, et al., 2018. Characterization of CcSTOP1; a C2H2-type transcription factor regulates Al tolerance gene in pigeonpea. Planta, 247(1):201–214.  https://doi.org/10.1007/s00425-017-2777-6 CrossRefPubMedGoogle Scholar
  10. Delhaize E, Craig S, Beaton CD, et al., 1993a. Aluminum tolerance in wheat (Triticum aestivum L.): I. uptake and distribution of aluminum in root apices. Plant Physiol, 103(3):685–693.  https://doi.org/10.1104/pp.103.3.685 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Delhaize E, Ryan PR, Randall PJ, 1993b. Aluminum tolerance in wheat (Triticum aestivum L.): II. aluminum-stimulated excretion of malic acid from root apices. Plant Physiol, 103(3):695–702.  https://doi.org/10.1104/pp.103.3.695 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Delhaize E, Ryan PR, Hebb DM, et al., 2004. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA, 101(42):15249–15254.  https://doi.org/10.1073/pnas.0406258101 CrossRefPubMedGoogle Scholar
  13. Ding ZJ, Yan JY, Xu XY, et al., 2013. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J, 76(5):825–835.  https://doi.org/10.1111/tpj.12337 CrossRefPubMedGoogle Scholar
  14. Durrett TP, Gassmann W, Rogers EE, 2007. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol, 144(1):197–205.  https://doi.org/10.1104/pp.107.097162 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Famoso AN, Zhao KY, Clark RT, et al., 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet, 7(8):e1002221.  https://doi.org/10.1371/journal.pgen.1002221 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fan W, Lou HQ, Gong YL, et al., 2015. Characterization of an inducible C2H2-type zinc finger transcription factor VuSTOP1 in rice bean (Vigna umbellata) reveals differential regulation between low pH and aluminum tolerance mechanisms. New Phytol, 208(2):456–468.  https://doi.org/10.1111/nph.13456 CrossRefPubMedGoogle Scholar
  17. Fan W, Xu JM, Lou HQ, et al., 2016. Physiological and molecular analysis of aluminium-induced organic acid anion secretion from grain amaranth (Amaranthus hypochondriacus L.) roots. Int J Mol Sci, 17(5):608.  https://doi.org/10.3390/ijms17050608 CrossRefPubMedCentralGoogle Scholar
  18. Fan W, Xu JM, Wu P, et al., 2019. Alleviation by abscisic acid of Al toxicity in rice bean is not associated with citrate efflux but depends on ABI5-mediated signal transduction pathways. J Integr Plant Biol, 61(2):140–154.  https://doi.org/10.1111/jipb.12695 CrossRefPubMedGoogle Scholar
  19. Fujii M, Yokosho K, Yamaji N, et al., 2012. Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun, 3:713.  https://doi.org/10.1038/ncomms1726 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Furukawa J, Yamaji N, Wang H, et al., 2007. An aluminum-activated citrate transporter in barley. Plant Cell Physiol, 48(8):1081–1091.  https://doi.org/10.1093/pcp/pcm091 CrossRefPubMedGoogle Scholar
  21. Garcia-Oliveira AL, Benito C, Prieto P, et al., 2013. Molecular characterization of TaSTOP1 homoeologues and their response to aluminium and proton (H+) toxicity in bread wheat (Triticum aestivum L.). BMC Plant Biol, 13:134.  https://doi.org/10.1186/1471-2229-13-134 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hartwell BL, Pember FR, 1918. The presence of aluminum as a reason for the difference in the effects of so-called acid soil on barley and rye. Soil Sci, 6(4):259–280.  https://doi.org/10.1097/00010694-191810000-00001 CrossRefGoogle Scholar
  23. Hoekenga OA, Maron LG, Piñeros MA, et al., 2006. AtLMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA, 103(25):9738–9743.  https://doi.org/10.1073/pnas.0602868103 CrossRefPubMedGoogle Scholar
  24. Horst WJ, Wang YX, Eticha D, 2010. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot, 106(1):185–197.  https://doi.org/10.1093/aob/mcq053 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Huang CF, Yamaji N, Mitani N, et al., 2009. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell, 21(2):655–667.  https://doi.org/10.1105/tpc.108.064543 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Huang CF, Yamaji N, Chen ZC, et al., 2012. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J, 69(5):857–867.  https://doi.org/10.1111/j.1365-313X.2011.04837.x CrossRefPubMedGoogle Scholar
  27. Huang S, Gao J, You JF, et al., 2018. Identification of STOP1-like proteins associated with aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Front Plant Sci, 9:258.  https://doi.org/10.3389/fpls.2018.00258 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Iuchi S, Koyama H, Iuchi A, et al., 2007. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA, 104(23):9900–9905.  https://doi.org/10.1073/pnas.0700117104 CrossRefPubMedGoogle Scholar
  29. Kashino-Fujii M, Yokosho K, Yamaji N, et al., 2018. Retrotransposon insertion and DNA methylation regulate aluminum tolerance in European barley accessions. Plant Physiol, 178(2):716–727.  https://doi.org/10.1104/pp.18.00651 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kitagawa T, 1986. Genotypic variations in Al resistance in wheat and organic acid secretion. Jpn J Soil Sci Plant Nutr, 57:352–358.Google Scholar
  31. Kobayashi Y, Hoekenga OA, Itoh H, et al., 2007. Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol, 145(3):843–852.  https://doi.org/10.1104/pp.107.102335 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kobayashi Y, Ohyama Y, Kobayashi Y, et al., 2014. STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant, 7(2):311–322.  https://doi.org/10.1093/mp/sst116 CrossRefPubMedGoogle Scholar
  33. Kochian LV, 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol, 46:237–260.  https://doi.org/10.1146/annurev.pp.46.060195.001321 CrossRefGoogle Scholar
  34. Kochian LV, Hoekenga OA, Piñeros MA, 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol, 55:459–493.  https://doi.org/10.1146/annurev.arplant.55.031903.141655 CrossRefPubMedGoogle Scholar
  35. Kochian LV, Piñeros MA, Liu JP, et al., 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annu Rev Plant Biol, 66:571–598.  https://doi.org/10.1146/annurev-arplant-043014-114822 CrossRefPubMedGoogle Scholar
  36. Kollmeier M, Dietrich P, Bauer CS, et al., 2001. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and an aluminum-resistant cultivar. Plant Physiol, 126(1):397–410.  https://doi.org/10.1104/pp.126.L397 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kundu A, Das S, Basu S, et al., 2019. GhSTOP1, a C2H2 type zinc finger transcription factor is essential for Aluminum and proton stress tolerance and lateral root initiation in cotton. Plant Biol, 21(1):35–44.  https://doi.org/10.1111/plb.12895 CrossRefPubMedGoogle Scholar
  38. Larsen PB, Geisler MJB, Jones CA, et al., 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J, 41(3):353–363.  https://doi.org/10.1111/j.1365-313X.2004.02306.x CrossRefPubMedGoogle Scholar
  39. Li GZ, Wang ZQ, Yokosho K, et al., 2018. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New Phytol, 219(1):149–162.  https://doi.org/10.1111/nph.15143 CrossRefPubMedGoogle Scholar
  40. Li XF, Ma JF, Matsumoto H, 2000. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol, 123(4):1537–1544.  https://doi.org/10.1104/pp.123.4.1537 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li YY, Zhang YJ, Zhou Y, et al., 2009. Protecting cell walls from binding aluminum by organic acids contributes to aluminum resistance. J integr Plant Biol, 51(6):574–580.  https://doi.org/10.1111/j.1744-7909.2009.00825.x CrossRefPubMedGoogle Scholar
  42. Liang CY, Piñeros MA, Tian J, et al., 2013. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol, 161(3):1347–1361.  https://doi.org/10.1104/pp.112.208934 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ligaba A, Katsuhara M, Ryan PR, et al., 2006. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells. Plant Physiol, 142(3):1294–1303.  https://doi.org/10.1104/pp.106.085233 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ligaba A, Kochian L, Piñeros M, 2009. Phosphorylation at S384 regulates the activity of the TaALMT1 malate transporter that underlies aluminum resistance in wheat. Plant J, 60(3):411–423.  https://doi.org/10.1111/j.1365-313X.2009.03964.x CrossRefPubMedGoogle Scholar
  45. Ligaba-Osena A, Fei ZJ, Liu JP, et al., 2017. Loss-of-function mutation of the calcium sensor CBL1 increases aluminum sensitivity in Arabidopsis. New Phytol, 214(2):830–841.  https://doi.org/10.1111/nph.14420 CrossRefPubMedGoogle Scholar
  46. Liu JP, Magalhaes JV, Shaff J, et al., 2009. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J, 57(3):389–399.  https://doi.org/10.1111/j.1365-313X.2008.03696.x CrossRefPubMedGoogle Scholar
  47. Liu MY, Chen WW, Xu JM, et al., 2013. The role of VuMATE1 expression in aluminium-inducible citrate secretion in rice bean (Vigna umbellata) roots. J Exp Bot, 64(7):1795–1804.  https://doi.org/10.1093/jxb/ert039 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Liu MY, Lou HQ, Chen WW, et al., 2018. Two citrate transporters coordinately regulate citrate secretion from rice bean root tip under aluminum stress. Plant Cell Environ, 41(4):809–822.  https://doi.org/10.1111/pce.13150 CrossRefPubMedGoogle Scholar
  49. Lou HQ, Gong YL, Fan W, et al., 2016a. A formate dehydrogenase confers tolerance to aluminum and low pH. Plant Physiol, 171(1):294–305.  https://doi.org/10.1104/pp.16.01105 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lou HQ, Fan W, Xu JM, et al., 2016b. An oxalyl-CoA synthetase is involved in oxalate degradation and aluminum tolerance. Plant Physiol, 172(3):1679–1690.  https://doi.org/10.1104/pp.16.01106 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ma JF, 2000. Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol, 41(4):383–390.  https://doi.org/10.1093/pcp/41.4.383 CrossRefPubMedGoogle Scholar
  52. Ma JF, 2007. Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol, 264:225–252.  https://doi.org/10.1016/S0074-7696(07)64005-4 CrossRefPubMedGoogle Scholar
  53. Ma JF, Zheng SJ, Matsumoto H, 1997. Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol, 38(9):1019–1025.  https://doi.org/10.1093/oxfordjournals.pcp.a029266 CrossRefGoogle Scholar
  54. Ma Z, Miyasaka SC, 1998. Oxalate exudation by taro in response to Al. Plant Physiol, 118(3):861–865.  https://doi.org/10.1104/pp.118.3.861 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Magalhaes JV, Liu JP, Guimarães CT, et al., 2007. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet, 39(9):1156–1161.  https://doi.org/10.1038/ng2074 CrossRefPubMedGoogle Scholar
  56. Maron LG, Piñeros MA, Guimarães CT, et al., 2010. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J, 61(5):728–740.  https://doi.org/10.1111/j.1365-313X.2009.04103.x CrossRefPubMedGoogle Scholar
  57. Maron LG, Guimarães CT, Kirst M, et al., 2013. Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA, 110(13):5241–5246.  https://doi.org/10.1073/pnas.1220766110 CrossRefPubMedGoogle Scholar
  58. Matsumoto H, 2000. Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol, 200:1–46.  https://doi.org/10.1016/S0074-7696(00)00001-2 CrossRefPubMedGoogle Scholar
  59. Matzenbacher RG, 1988. Advances made in developing wheats with better aluminum toxicity tolerance in Brazil. In: Klatt AR (Ed.), Wheat Production Constraints in Tropical Environments. CIMMYT, Mexico, p. 285–304.Google Scholar
  60. Melo JO, Lana UGP, Piñeros MA, et al., 2013. Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. Plant J, 73(2):276–288.  https://doi.org/10.1111/tpj.12029 CrossRefPubMedGoogle Scholar
  61. Melo JO, Martins LGC, Barros BA, et al., 2019. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci USA, 116(1):313–318.  https://doi.org/10.1073/pnas.1808400115 CrossRefPubMedGoogle Scholar
  62. Miyasaka SC, Buta JG, Howell RK, et al., 1991. Mechanism of aluminum tolerance in snapbeans: root exudation of citric acid. Plant Physiol, 96(3):737–743.  https://doi.org/10.1104/pp.96.3.737 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Morita A, Yanagisawa O, Maeda S, et al., 2011. Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum. Soil Sci Plant Nutr, 57(6):796–802.  https://doi.org/10.1080/00380768.2011.629176 CrossRefGoogle Scholar
  64. Nezames CD, Sjogren CA, Barajas JF, et al., 2012. The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. Plant Cell, 24(2):608–621.  https://doi.org/10.1105/tpc.112.095596 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ohyama Y, Ito H, Kobayashi Y, et al., 2013. Characterization of AtSTOP1 orthologous genes in tobacco and other plant species. Plant Physiol, 162(4):1937–1946.  https://doi.org/10.1104/pp.113.218958 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Osawa H, Matsumoto H, 2001. Possible involvement of protein phosphorylation in aluminum-responsive malate efflux from wheat root apex. Plant Physiol, 126(1):411–420.  https://doi.org/10.1104/pp.126.1.411 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pellet DM, Grunes DL, Kochian LV, 1995. Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 196(4):788–795.  https://doi.org/10.1007/BF01106775 CrossRefGoogle Scholar
  68. Pereira JF, Ryan PR, 2019. The role of transposable elements in the evolution of aluminium resistance in plants. J Exp Bot, 70(1):41–54.  https://doi.org/10.1093/jxb/ery357 CrossRefPubMedGoogle Scholar
  69. Pereira JF, Barichello D, Ferreira JR, et al., 2015. TaALMT1 and TaMATE1B allelic variability in a collection of Brazilian wheat and its association with root growth on acidic soil. Mol Breeding, 35(8):169.  https://doi.org/10.1007/s11032-015-0363-9 CrossRefGoogle Scholar
  70. Piñeros MA, Kochian LV, 2001. A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance in maize. Identification and characterization of Al3+-induced anion channels. Plant Physiol, 125(1):292–305.  https://doi.org/10.1104/pp.125.L292 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ramesh SA, Tyerman SD, Xu B, et al., 2015. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters. Nat Commun, 6:7879.  https://doi.org/10.1038/ncomms8879 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rengel Z, 2004. Aluminium cycling in the soil-plant-animal-human continuum. Biometals, 17(6):669–689.  https://doi.org/10.1007/s10534-004-1201-4 CrossRefPubMedGoogle Scholar
  73. Rounds MA, Larsen PB, 2008. Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol, 18(19):1495–1500.  https://doi.org/10.1016/jxub.2008.08.050 CrossRefPubMedGoogle Scholar
  74. Ryan PR, Delhaize E, 2010. The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol, 37(4):275–284.  https://doi.org/10.1071/FP09261 CrossRefGoogle Scholar
  75. Ryan PR, Delhaize E, Jones DL, 2001. Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol, 52:527–560.  https://doi.org/10.1146/annurev.arplant.52.1.527 CrossRefPubMedGoogle Scholar
  76. Ryan PR, Raman H, Gupta S, et al., 2009. A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol, 149(1):340–351.  https://doi.org/10.1104/pp.108.129155 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ryan PR, Raman H, Gupta S, et al., 2010. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J, 64(3):446–455.  https://doi.org/10.1111/j.1365-313X.2010.04338.x CrossRefPubMedGoogle Scholar
  78. Sasaki T, Yamamoto Y, Ezaki B, et al., 2004. A wheat gene encoding an aluminum-activated malate transporter. Plant J, 37(5):645–653.  https://doi.org/10.1111/j.1365-313X.2003.01991.x CrossRefPubMedGoogle Scholar
  79. Sasaki T, Ryan PR, Delhaize E, et al., 2006. Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol, 47(10):1343–1354.  https://doi.org/10.1093/pcp/pc1002 CrossRefPubMedGoogle Scholar
  80. Sawaki Y, Iuchi S, Kobayashi Y, et al., 2009. STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol, 150(1):281–294.  https://doi.org/10.1104/pp.108.134700 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sawaki Y, Kobayashia Y, Kihara-Doi T, et al., 2014. Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes. Plant Sci, 223:8–15.  https://doi.org/10.1016/j.plantsci.2014.02.011 CrossRefPubMedGoogle Scholar
  82. Sharma T, Dreyer I, Kochian L, et al., 2016. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci, 7:1488.  https://doi.org/10.3389/fpls.2016.01488 PubMedPubMedCentralGoogle Scholar
  83. Singh S, Tripathi DK, Singh S, et al., 2017. Toxicity of aluminium on various levels of plant cells and organism: a review. Environ Exp Bot, 137:177–193.  https://doi.org/10.1016/j.envexpbot.2017.01.005 CrossRefGoogle Scholar
  84. Sjogren CA, Larsen PB, 2017. SUV2, which encodes an ATR-related cell cycle checkpoint and putative plant ATRIP, is required for aluminium-dependent root growth inhibition in Arabidopsis. Plant Cell Environ, 40(9):1849–1860.  https://doi.org/10.1111/pce.12992 CrossRefPubMedGoogle Scholar
  85. Sjogren CA, Bolaris SC, Larsen PB, 2015. Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and SOG1-regulated transcriptional response. Plant Cell, 27(9):2501–2515.  https://doi.org/10.1105/tpc.15.00172 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Takanashi K, Shitan N, Yazaki K, 2014. The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol, 31(5):417–430.  https://doi.org/10.5511/plantbiotechnology.14.0904a CrossRefGoogle Scholar
  87. Taylor GJ, 1991. Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol, 10:57–93.Google Scholar
  88. Tokizawa M, Kobayashi Y, Saito T, et al., 2015. SENSITIVE TO PROTON RHIZOTOXICITY1, CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2, and other transcription factors are involved in ALUMINUM-ACTIVATED MALATE TRANSPORTER1 expression. Plant Physiol, 167(3):991–1003.  https://doi.org/10.1104/pp.114.256552 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Tovkach A, Ryan PR, Richardson AE, et al., 2013. Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol, 161(2):880–892.  https://doi.org/10.1104/pp.112.207142 CrossRefPubMedGoogle Scholar
  90. Tsutsui T, Yamaji N, Ma JF, 2011. Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol, 156(2):925–931.  https://doi.org/10.1104/pp.111.175802 CrossRefPubMedPubMedCentralGoogle Scholar
  91. von Uexküll HR, Mutert E, 1995. Global extent, development and economic impact of acid soils. Plant soil, 171(1):1–15.  https://doi.org/10.1007/BF00009558 CrossRefGoogle Scholar
  92. Wu WW, Lin Y, Chen QQ, et al., 2018. Functional conservation and divergence of soybean GmSTOP1 members in proton and aluminum tolerance. Front Plant Sci, 9:570.  https://doi.org/10.3389/fpls.2018.00570 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Xia JX, Yamaji N, Kasai T, et al., 2010. Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA, 107(43):18381–18385.  https://doi.org/10.1073/pnas.1004949107 CrossRefPubMedGoogle Scholar
  94. Xia JX, Yamaji N, Ma JF, 2013. A plasma membrane-localized small peptide is involved in rice aluminum tolerance. Plant J, 76(2):345–355.  https://doi.org/10.1111/tpj.12296 PubMedGoogle Scholar
  95. Yang JL, Zheng SJ, He YF, et al., 2005. Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot, 56(414):1197–1203.  https://doi.org/10.1093/jxb/eri113 CrossRefPubMedGoogle Scholar
  96. Yang JL, Zhang L, Li YY, et al., 2006a. Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot, 97(4):579–584.  https://doi.org/10.1093/aob/mcl005 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yang JL, Zheng SJ, He YF, et al., 2006b. Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant Cell Environ, 29(2):240–246.  https://doi.org/10.1111/j.1365-3040.2005.01416.x CrossRefPubMedGoogle Scholar
  98. Yang JL, Zhang L, Zheng SJ, 2008. Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators. J integr Plant Biol, 50(9):1103–1107.  https://doi.org/10.1111/j.1744-7909.2008.00687.x CrossRefPubMedGoogle Scholar
  99. Yang JL, Zhu XF, Peng YX, et al., 2011. Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta, 234(2):281–291.  https://doi.org/10.1007/s00425-011-1402-3 CrossRefPubMedGoogle Scholar
  100. Yang XY, Yang JL, Zhou Y, et al., 2011. A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant Cell Environ, 34(12):2138–2148.  https://doi.org/10.1111/j.1365-3040.2011.02410.x CrossRefPubMedGoogle Scholar
  101. Yang ZM, Nian H, Sivaguru M, et al., 2001. Characterization of aluminium-induced citrate secretion in aluminiumtolerant soybean (Glycine max) plants. Physiol Plantarum, 113(1):64–71.  https://doi.org/10.1034/j.1399-3054.2001.1130109.x CrossRefGoogle Scholar
  102. Yokosho K, Yamaji N, Ma JF, 2010. Isolation and characterisation of two MATE genes in rye. Funct Plant Biol, 37(4):296–303.  https://doi.org/10.1071/FP09265 CrossRefGoogle Scholar
  103. Yokosho K, Yamaji N, Ma JF, 2011. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J, 68(6):1061–1069.  https://doi.org/10.1111/j.1365-313X.2011.04757.x CrossRefPubMedGoogle Scholar
  104. Yokosho K, Yamaji N, Fujii-Kashino M, et al., 2016. Retrotransposon-mediated aluminum tolerance through enhanced expression of the citrate transporter OsFRDL4. Plant Physiol, 172(4):2327–2336.  https://doi.org/10.1104/pp.16.01214 CrossRefPubMedPubMedCentralGoogle Scholar
  105. You JF, He YF, Yang JL, et al., 2005. A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils. Plant Soil, 276(1–2):143–151.  https://doi.org/10.1007/s11104-005-3786-y CrossRefGoogle Scholar
  106. Zhang L, Wu XX, Wang JF, et al., 2018. BoALMT1, an Al-induced malate transporter in cabbage, enhances aluminum tolerance in Arabidopsis thaliana. Front Plant Sci, 8:2156.  https://doi.org/10.3389/fpls.2017.02156 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Zhang Y, Guo JL, Chen M, et al., 2018. The cell cycle checkpoint regulator ATR is required for internal aluminum toxicity-mediated root growth inhibition in Arabidopsis. Front Plant Sci, 9:118.  https://doi.org/10.3389/fpls.2018.00118 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zhang Y, Zhang J, Guo JL, et al., 2019. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci USA, 116(1):319–327.  https://doi.org/10.1073/pnas.1814426116 CrossRefPubMedGoogle Scholar
  109. Zhao H, Huang W, Zhang YG, et al., 2018. Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance. Plant Soil, 431(1–2):71–87.  https://doi.org/10.1007/s11104-018-3746-y CrossRefGoogle Scholar
  110. Zheng SJ, Yang JL, 2005. Target sites of aluminum phytotoxicity. Biol Plant, 49(3):321–331.  https://doi.org/10.1007/s10535-005-0001-1 CrossRefGoogle Scholar
  111. Zheng SJ, Ma JF, Matsumoto H, 1998. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol, 117(3):745–751.  https://doi.org/10.1104/pp.117.3.745 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Plant Biology, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Laboratory of Agricultural Resources and Environment, College of Resources and EnvironmentYunnan Agricultural UniversityKunmingChina

Personalised recommendations