Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 6, pp 457–466 | Cite as

p53 and its isoforms in DNA double-stranded break repair

  • Yu-xi Zhang
  • Wen-ya Pan
  • Jun ChenEmail author
Review

Abstract

DNA double-stranded break (DSB) is one of the most catastrophic damages of genotoxic insult. Inappropriate repair of DNA DSBs results in the loss of genetic information, mutation, and the generation of harmful genomic rearrangements, which predisposes an organism to immunodeficiency, neurological damage, and cancer. The tumor repressor p53 plays a key role in DNA damage response, and has been found to be mutated in 50% of human cancer. p53, p63, and p73 are three members of the p53 gene family. Recent discoveries have shown that human p53 gene encodes at least 12 isoforms. Different p53 members and isoforms play various roles in orchestrating DNA damage response to maintain genomic integrity. This review briefly explores the functions of p53 and its isoforms in DNA DSB repair.

Key words

p53 p53 isoform DNA double-stranded break repair Cell death 

p53 及其异构体在DNA 双链断裂修复中的作用

概要

DNA双链断裂是DNA损伤最严重的形式。如果 DNA断裂不能正确修复,将会导致遗传物质的丢 失、基因突变和染色体重排。这不仅会影响正常 的发育和衰老过程,而且更严重的是基因组的不 完整会导致人类容易患上免疫缺陷、神经系统紊 乱和癌症等疾病。抑癌基因p53在DNA损伤反应 中扮演着一个中心角色,超过50%以上的人类癌 细胞中p53发生了变异。p53家族包括p53、p63 和p73三个成员。近年来研究发现:人的p53基因 最少编码12个异构体,这些异构体在DNA损伤反 应中起着不同作用,并协同p53一起维持基因组 DNA的完整性。本综述将探讨p53及其异构体在 DNA双链断裂修复中的作用。

关键词

p53 p53 异构体 DNA 双链断裂修复 细胞死亡 

CLC number

Q78 

References

  1. Akyüz N, Boehden GS, Süsse S, et al., 2002. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol Cell Biol, 22(17):6306–6317.  https://doi.org/10.1128/MCB.22.17.6306-6317.2002 Google Scholar
  2. Amson R, Pece S, Lespagnol A, et al., 2011. Reciprocal repression between p53 and TCTP. Nat Med, 18(1):91–99.  https://doi.org/10.1038/nm.2546 Google Scholar
  3. Anensen N, Oyan AM, Bourdon JC, et al., 2006. A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res, 12(13):3985–3992.  https://doi.org/10.1158/1078-0432.CCR-05-1970 Google Scholar
  4. Aoubala M, Murray-Zmijewski F, Khoury MP, et al., 2011. p53 directly transactivates Δ133p53α, regulating cell fate outcome in response to DNA damage. Cell Death Differ, 18(2):248–258.  https://doi.org/10.1038/cdd.2010.91 Google Scholar
  5. Arias-Lopez C, Lazaro-Trueba I, Kerr P, et al., 2006. p53 modulates homologous recombination by transcriptional regulation of the RAD51 gene. EMBO Rep, 7(2):219–224.  https://doi.org/10.1038/sj.embor.7400587 Google Scholar
  6. Arsic N, Gadea G, Lagerqvist EL, et al., 2015. The p53 isoform Δ133p53β promotes cancer stem cell potential. Stem Cell Rep, 4(4):531–540.  https://doi.org/10.1016/j.stemcr.2015.02.001 Google Scholar
  7. Bernard H, Garmy-Susini B, Ainaoui N, et al., 2013. The p53 isoform, Δ133p53α, stimulates angiogenesis and tumour progression. Oncogene, 32(17):2150–2160.  https://doi.org/10.1038/onc.2012.242 Google Scholar
  8. Blander G, Kipnis J, Leal JFM, et al., 1999. Physical and functional interaction between p53 and the Werner’s syndrome protein. J Biol Chem, 274(41):29463–29469.  https://doi.org/10.1074/jbc.274.41.29463 Google Scholar
  9. Boehden GS, Akyüz N, Roemer K, et al., 2003. p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene, 22(26):4111–4117.  https://doi.org/10.1038/sj.onc.1206632 Google Scholar
  10. Bourdon JC, 2007. p53 family isoforms. Curr Pharm Biotechnol, 8(6):332–336.  https://doi.org/10.2174/138920107783018444 Google Scholar
  11. Bourdon JC, Fernandes K, Murray-Zmijewski F, et al., 2005. p53 isoforms can regulate p53 transcriptional activity. Genes Dev, 19(18):2122–2137.  https://doi.org/10.1101/gad.1339905 Google Scholar
  12. Buchhop S, Gibson MK, Wang XW, et al., 1997. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res, 25(19):3868–3874.  https://doi.org/10.1093/nar/25.19.3868 Google Scholar
  13. Candeias MM, Hagiwara M, Matsuda M, 2016. Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis. EMBO Rep, 17(11):1542–1551.  https://doi.org/10.15252/embr.201541956 Google Scholar
  14. Chen J, Ruan H, Ng SM, et al., 2005. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev, 19(23):2900–2911.  https://doi.org/10.1101/gad.1366405 Google Scholar
  15. Chen J, Ng SM, Chang CQ, et al., 2009. p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev, 23(3): 278–290.  https://doi.org/10.1101/gad.1761609 Google Scholar
  16. Chipuk JE, Bouchier-Hayes L, Kuwana T, et al., 2005. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 309(5741):1732–1735.  https://doi.org/10.1126/science.1114297 Google Scholar
  17. Courtois S, Verhaegh G, North S, et al., 2002. ΔN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene, 21(44):6722–6728.  https://doi.org/10.1038/sj.onc.1205874 Google Scholar
  18. Dai C, Gu W, 2010. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med, 16(11): 528–536.  https://doi.org/10.1016/j.molmed.2010.09.002 Google Scholar
  19. de Oca Luna RM, Wagner DS, Lozano G, 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature, 378(6553):203–206.  https://doi.org/10.1038/378203a0 Google Scholar
  20. Donehower LA, Harvey M, Slagle BL, et al., 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366):215–221.  https://doi.org/10.1038/356215a0 Google Scholar
  21. Dudáš A, Chovanec M, 2004. DNA double-strand break repair by homologous recombination. Mutat Res, 566(2):131–167.  https://doi.org/10.1016/j.mrrev.2003.07.001 Google Scholar
  22. Fragou A, Tzimagiorgis G, Karageorgopoulos C, et al., 2017. Increased Δ133p53 mRNA in lung carcinoma corresponds with reduction of p21 expression. Mol Med Rep, 15(4): 1455–1460.  https://doi.org/10.3892/mmr.2017.6162 Google Scholar
  23. Fujita K, Mondal AM, Horikawa I, et al., 2009. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol, 11(9):1135–1142.  https://doi.org/10.1038/ncb1928 Google Scholar
  24. Gatz SA, Wiesmuller L, 2006. p53 in recombination and repair. Cell Death Differ, 13(6):1003–1016.  https://doi.org/10.1038/sj.cdd.4401903 Google Scholar
  25. Gong HJ, Zhang YX, Jiang KP, et al., 2018. p73 coordinates with Δ133p53 to promote DNA double-strand break repair. Cell Death Differ, 25(6):1063–1079.  https://doi.org/10.1038/s41418-018-0085-8 Google Scholar
  26. Gong JG, Costanzo A, Yang HQ, et al., 1999. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature, 399(6738):806–809.  https://doi.org/10.1038/21690 Google Scholar
  27. Gong L, Gong HJ, Pan X, et al., 2015. p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage. Cell Res, 25(3):351–369.  https://doi.org/10.1038/cr.2015.22 Google Scholar
  28. Gong L, Pan X, Yuan ZM, et al., 2016. p53 coordinates with Δ133p53 isoform to promote cell survival under low-level oxidative stress. J Mol Cell Biol, 8(1):88–90.  https://doi.org/10.1093/jmcb/mjv069 Google Scholar
  29. Gonzalez S, Prives C, Cordon-Cardo C, 2003. p73α regulation by Chk1 in response to DNA damage. Mol Cell Biol, 23(22):8161–8171.  https://doi.org/10.1128/MCB.23.22.8161-8171.2003 Google Scholar
  30. Hakem R, 2008. DNA-damage repair; the good, the bad, and the ugly. EMBO J, 27(4):589–605.  https://doi.org/10.1038/emboj.2008.15 Google Scholar
  31. Helton ES, Chen XB, 2007. p53 modulation of the DNA damage response. J Cell Biochem, 100(4):883–896.  https://doi.org/10.1002/jcb.21091 Google Scholar
  32. Hiom K, 2010. Coping with DNA double strand breaks. DNA Repair, 9(12):1256–1263.  https://doi.org/10.1016/j.dnarep.2010.09.018 Google Scholar
  33. Hoh J, Jin S, Parrado T, et al., 2002. The p53MH algorithm and its application in detecting p53-responsive genes. Proc Natl Acad Sci USA, 99(13):8467–8472.  https://doi.org/10.1073/pnas.132268899 Google Scholar
  34. Irwin M, Marin MC, Phillips AC, et al., 2000. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature, 407(6804):645–648.  https://doi.org/10.1038/35036614 Google Scholar
  35. Joruiz SM, Bourdon JC, 2016. p53 isoforms: key regulators of the cell fate decision. Cold Spring Harb Perspect Med, 6(8):a026039.  https://doi.org/10.1101/cshperspect.a026039 Google Scholar
  36. Keimling M, Wiesmuller L, 2009. DNA double-strand break repair activities in mammary epithelial cells—influence of endogenous p53 variants. Carcinogenesis, 30(7):1260–1268.  https://doi.org/10.1093/carcin/bgp117 Google Scholar
  37. Kim S, An SS, 2016. Role of p53 isoforms and aggregations in cancer. Medicine (Baltimore), 95(26):e3993.  https://doi.org/10.1097/MD.0000000000003993 Google Scholar
  38. Langheinrich U, Hennen E, Stott G, et al., 2002. Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol, 12(23):2023–2028.  https://doi.org/10.1016/S0960-9822(02)01319-2 Google Scholar
  39. Levine AJ, Oren M, 2009. The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9(10):749–758.  https://doi.org/10.1038/nrc2723 Google Scholar
  40. Levine AJ, Hu W, Feng Z, 2006. The p53 pathway: what questions remain to be explored? Cell Death Differ, 13(6): 1027–1036.  https://doi.org/10.1038/sj.cdd.4401910 Google Scholar
  41. Lin YL, Sengupta S, Gurdziel K, et al., 2009. p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet, 5(10):e1000680.  https://doi.org/10.1371/journal.pgen.1000680 Google Scholar
  42. Linke SP, Sengupta S, Khabie N, et al., 2003. p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res, 63(10):2596–2605.Google Scholar
  43. Marcel V, Perrier S, Aoubala M, et al., 2010a. Δ160p53 is a novel N-terminal p53 isoform encoded by Δ133p53 transcript. FEBS Lett, 584(21):4463–4468.  https://doi.org/10.1016/j.febslet.2010.10.005 Google Scholar
  44. Marcel V, Vijayakumar V, Fernández-Cuesta L, et al., 2010b. p53 regulates the transcription of its delta133p53 isoform through specific response elements contained within the TP 53 P2 internal promoter. Oncogene, 29(18):2691–2700.  https://doi.org/10.1038/onc.2010.26 Google Scholar
  45. Marmorstein LY, Ouchi T, Aaronson SA, 1998. The BRCA2 gene product functionally interacts with p53 and RAD51. Proc Natl Acad Sci USA, 95(23):13869–13874.  https://doi.org/10.1073/pnas.95.23.13869 Google Scholar
  46. Meek DW, 2009. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer, 9(10):714–723.  https://doi.org/10.1038/nrc2716 Google Scholar
  47. Mekeel KL, Tang W, Kachnic LA, et al., 1997. Inactivation of p53 results in high rates of homologous recombination. Oncogene, 14(15):1847–1857.  https://doi.org/10.1038/sj.onc.1201143 Google Scholar
  48. Mills AA, Zheng BH, Wang XJ, et al., 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398(6729):708–713.  https://doi.org/10.1038/19531 Google Scholar
  49. Moll UM, Wolff S, Speidel D, et al., 2005. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol, 17(6):631–636.  https://doi.org/10.1016/j.ceb.2005.09.007 Google Scholar
  50. Mondal AM, Horikawa I, Pine SR, et al., 2013. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Invest, 123(12):5247–5257.  https://doi.org/10.1172/JCI70355 Google Scholar
  51. Moore HC, Jordan LB, Bray SE, et al., 2010. The RNA helicase p68 modulates expression and function of the Δ133 isoform(s) of p53, and is inversely associated with Δ133p53 expression in breast cancer. Oncogene, 29(49): 6475–6484.  https://doi.org/10.1038/onc.2010.381 Google Scholar
  52. Nutthasirikul N, Limpaiboon T, Leelayuwat C, et al., 2013. Ratio disruption of the Δ133p53 and TAp53 isoform equilibrium correlates with poor clinical outcome in intrahepatic cholangiocarcinoma. Int J Oncol, 42(4):1181–1188.  https://doi.org/10.3892/ijo.2013.1818 Google Scholar
  53. Ohki R, Kawase T, Ohta T, et al., 2007. Dissecting functional roles of p53 N-terminal transactivation domains by microarray expression analysis. Cancer Sci, 98(2):189–200.  https://doi.org/10.1111/j.1349-7006.2006.00375.x Google Scholar
  54. Okorokov AL, Orlova EV, 2009. Structural biology of the p53 tumour suppressor. Curr Opin Struct Biol, 19(2):197–202.  https://doi.org/10.1016/j.sbi.2009.02.003 Google Scholar
  55. Ou Z, Yin L, Chang CQ, et al., 2014. Protein interaction between p53 and Δ113p53 is required for the anti-apoptotic function of Δ113p53. J Genet Genomics, 41(2):53–62.  https://doi.org/10.1016/j.jgg.2014.01.001 Google Scholar
  56. Pietsch EC, Sykes SM, McMahon SB, et al., 2008. The p53 family and programmed cell death. Oncogene, 27(50): 6507–6521.  https://doi.org/10.1038/onc.2008.315 Google Scholar
  57. Powell DJ, Hrstka R, Candeias M, et al., 2008. Stress-dependent changes in the properties of p53 complexes by the alternative translation product p53/47. Cell Cycle, 7(7):950–959.  https://doi.org/10.4161/cc.7.7.5626 Google Scholar
  58. Romanova LY, Willers H, Blagosklonny MV, et al., 2004. The interaction of p53 with replication protein a mediates suppression of homologous recombination. Oncogene, 23(56):9025–9033.  https://doi.org/10.1038/sj.onc.1207982 Google Scholar
  59. Tomasini R, Tsuchihara K, Wilhelm M, et al., 2008. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev, 22(19):2677–2691.  https://doi.org/10.1101/gad.1695308 Google Scholar
  60. Vieler M, Sanyal S, 2018. p53 isoforms and their implications in cancer. Cancers, 10(9):288.  https://doi.org/10.3390/cancers10090288 Google Scholar
  61. Vogelstein B, Lane D, Levine AJ, 2000. Surfing the p53 network. Nature, 408(6810):307–310.  https://doi.org/10.1038/35042675 Google Scholar
  62. Wang XW, Tseng A, Ellis NA, et al., 2001. Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem, 276(35):32948–32955.  https://doi.org/10.1074/jbc.M103298200 Google Scholar
  63. Wilhelm MT, Rufini A, Wetzel MK, et al., 2010. Isoform-specific p73 knockout mice reveal a novel role for ΔNp73 in the DNA damage response pathway. Genes Dev, 24(6): 549–560.  https://doi.org/10.1101/gad.1873910 Google Scholar
  64. Willers H, McCarthy EE, Wu B, et al., 2000. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene, 19(5): 632–639.  https://doi.org/10.1038/sj.onc.1203142 Google Scholar
  65. Yang AN, Walker N, Bronson R, et al., 2000. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature, 404(6773): 99–103.  https://doi.org/10.1038/35003607 Google Scholar
  66. Yoon D, Wang YZ, Stapleford K, et al., 2004. p53 inhibits strand exchange and replication fork regression promoted by human Rad51. J Mol Biol, 336(3):639–654.  https://doi.org/10.1016/jjmb.2003.12.050 Google Scholar
  67. Zhang HB, Somasundaram K, Peng Y, et al., 1998. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene, 16(13):1713–1721.  https://doi.org/10.1038/sj.onc.1201932 Google Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations