Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 12, pp 1003–1013 | Cite as

A novel oncolytic adenovirus inhibits hepatocellular carcinoma growth

  • Yu-huan Bai
  • Xiao-jing Yun
  • Yan Xue
  • Ting Zhou
  • Xin Sun
  • Yan-jing GaoEmail author
Article
  • 2 Downloads

Abstract

Objective

To evaluate the inhibitory role of a novel oncolytic adenovirus (OA), GP73-SphK1sR-Ad5, on the growth of hepatocellular carcinoma (HCC).

Methods

GP73-SphK1sR-Ad5 was constructed by integrating Golgi protein 73 (GP73) promoter and sphingosine kinase 1 (SphK1)-short hairpin RNA (shRNA) into adenovirus serotype 5 (Ad5), and transfecting into HCC Huh7 cells and normal human liver HL-7702 cells. The expression of SphK1 and adenovirus early region 1 (E1A) was detected by quantitative real-time PCR (qRT-PCR) and western blot, respectively. Cell viability was detected by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay, and apoptotic rate was determined by flow cytometry. An Huh7 xenograft model was established in mice injected intratumorally with GP73-SphK1sR-Ad5. Twenty days after injection, the tumor volume and weight, and the survival time of the mice were recorded. The histopathological changes in tumor tissues were observed by hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM).

Results

Transfection of GP73-SphK1sR-Ad5 significantly upregulated E1A and downregulated SphK1 in Huh7 cells, but not in HL7702 cells. GP73-SphK1sR-Ad5 transfection significantly decreased the viability and increased the apoptotic rate of Huh7 cells, but had no effect on HL7702 cells. Intratumoral injection of GP73-SphK1sR-Ad5 into the Huh7 xenograft mouse model significantly decreased tumor volume and weight, and prolonged survival time. It also significantly decreased the tumor infiltration area and blood vessel density, and increased the percentages of cells with nucleus deformation and cells with condensed chromatin in tumor tissues.

Conclusions

GP73-SphK1sR-Ad5 serves as a novel OA and can inhibit HCC progression with high specificity and efficacy.

Key words

Hepatocellular carcinoma Oncolytic adenovirus Golgi protein 73 Sphingosine kinase 1 

一种新的溶瘤腺病毒抑制肝癌细胞的生长

概要

目 的

研究新型溶瘤腺病毒 GP73-SphK1sR-Ad5 对肝癌 细胞生长的抑制作用。

创新点

GP73-SphK1sR-Ad5 是一种新型的溶瘤腺病毒, 可以特异及有效地抑制肝癌细胞生长, 为肝癌的 临床治疗提供新思路。

方 法

通过整合高尔基体蛋白 73 (GP73) 及鞘氨基醇 及鞘氨基醇 激酶 1 (SphK1) 构建了 GP73-SphK1sR-Ad5 腺 病毒, 进而转染肝癌 Huh7 细胞及正常 HL7702 肝细胞。通过实时定量 PCR 和蛋白印记实验检测 SphK1E1A 基因的表达; 通过四氮唑盐比色分 析法 (MTT 法) 检测细胞活力; 通过流式细胞术 检测细胞凋亡率。构建 Huh7 异种移植小鼠模型 并注射 GP73-SphK1sR-Ad5 腺病毒。 20 天后, 记 录小鼠肿瘤体积和重量, 以及存活时间。用苏木 精-伊红 (HE) 染色法和透射电镜 (TEM) 观察 肿瘤组织的病理变化。

结 果

GP73-SphK1sR-Ad5 转染显著上调了 Huh7 细胞中 E1A 的表达, 下调了 SphK1 的表达, 降低了细胞 活性, 并提高了凋亡率, 然而对 HL7702 细胞无 明显影响。 Huh7 异种移植小鼠模型内注射 GP73-SphK1sR-Ad5 显著降低了肿瘤的体积和重 量, 延长了小鼠的存活时间 并降低了肿瘤组织 中的肿瘤浸润面积、血管密度及核变形和染色质 浓缩的细胞数。

结 论

新型溶瘤腺病毒 GP73-SphK1sR-Ad5 可以特异和 有效地抑制肝癌进展。

关键词

肝癌 溶瘤腺病毒 高尔基体蛋白 73 (GP73) 鞘氨基醇激酶1 (SphK1) 

CLC number

R735.7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Contributors

Yu-huan BAI, Xiao-jing YUN, and Yan XUE designed and analyzed data. Ting ZHOU, Xin SUN, and Yan-jing GAO revised the article critically for important intellectual content. All authors read and approved the final manuscript. Therefore, all authors have full access to all the data in the study and take responsibility for the integrity and security of the data.

Compliance with ethics guidelines

Yu-huan BAI, Xiao-jing YUN, Yan XUE, Ting ZHOU, Xin SUN, and Yan-jing GAO declare that they have no conflict of interest.

The use and care of experimental animals were approved by the Institutional Animal Care and Use Committee, Qilu Hospital of Shandong University (Shandong, China).

References

  1. Baker AT, Aguirre-Hernández C, Halldén G, et al., 2018. Designer oncolytic adenovirus: coming of age. Cancers 10(6): 201.  https://doi.org/10.3390/cancers10060201 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bao MY, Chen ZA, Xu YF, et al., 2012. Sphingosine kinase 1 promotes tumour cell migration and invasion via the S1P/EDG1 axis in hepatocellular carcinoma. Liver Int 32(2): 331–338.  https://doi.org/10.1111/j.1478-3231.2011.02666.x PubMedCrossRefGoogle Scholar
  3. Bao YH, Guo YC, Zhang CL, et al., 2017. Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer. Int J Mol Sci 18(10): 2109.  https://doi.org/10.3390/ijms18102109 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chen W, Wu YQ, Liu W, et al., 2011. Enhanced antitumor efficacy of a novel fiber chimeric oncolytic adenovirus expressing p53 on hepatocellular carcinoma. Cancer Lett 307(1): 93–103.  https://doi.org/10.1016/j.canlet.2011.03.021 PubMedCrossRefGoogle Scholar
  5. Choi JW, Lee JS, Kim SW, et al., 2012. Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev 64(8): 720–729.  https://doi.org/10.1016/j.addr.2011.12.011 PubMedCrossRefGoogle Scholar
  6. Cuvillier O, 2007. Sphingosine kinase-1—a potential therapeutic target in cancer. Anti-Cancer Drugs 18(2): 105–110.  https://doi.org/10.1097/CAD.0b013e328011334d PubMedCrossRefGoogle Scholar
  7. Dai SD, Takabe K, Kapitonov D, et al., 2008. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 9(8): 662–673.  https://doi.org/10.2174/138945008785132402 CrossRefGoogle Scholar
  8. Datta A, Loo SY, Huang BH, et al., 2014. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 5(15): 5920–5933.  https://doi.org/10.18632/oncotarget.1874 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dong M, Chen ZH, Li X, et al., 2017. Serum Golgi protein 73 is a prognostic rather than diagnostic marker in hepatocellular carcinoma. Oncol Lett 14(5): 6277–6284.  https://doi.org/10.3892/ol.2017.6938 PubMedPubMedCentralGoogle Scholar
  10. Fang T, Dong YH, Zhang XM, et al., 2016. Integrating a novel SN38 prodrug into the PEGylated liposomal system as a robust platform for efficient cancer therapy in solid tumors. Int J Pharm 512(1): 39–48.  https://doi.org/10.1016/j.ijpharm.2016.08.036 PubMedCrossRefGoogle Scholar
  11. Guan HY, Liu LH, Cai JC, et al., 2011. Sphingosine kinase 1 is overexpressed and promotes proliferation in human thyroid cancer. Mol Endocrinol 25(11): 1858–1866.  https://doi.org/10.1210/me.2011-1048 PubMedPubMedCentralCrossRefGoogle Scholar
  12. He GQ, Lei W, Wang SB, et al., 2012. Overexpression of tumor suppressor TSLC1 by a survivin-regulated oncolytic adenovirus significantly inhibits hepatocellular carcinoma growth. J Cancer Res Clin Oncol 138(4): 657–670.  https://doi.org/10.1007/s00432-011-1138-2 PubMedCrossRefGoogle Scholar
  13. Kalogeridi MA, Zygogianni A, Kyrgias G, et al., 2015. Role of radiotherapy in the management of hepatocellular carcinoma: a systematic review. World J Hepatol 7(1): 101–112.  https://doi.org/10.4254/wjh.v7.i1.101 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kawamori T, Osta W, Johnson KR, et al., 2006. Sphingosine kinase 1 is up-regulated in colon carcinogenesis. FASEB J 20(2): 386–388.  https://doi.org/10.1096/fj.05-4331fje PubMedCrossRefGoogle Scholar
  15. Kurihara T, Brough DE, Kovesdi I, et al., 2000. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 106(6): 763–771.  https://doi.org/10.1172/JCI9180 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kwon OJ, Kim PH, Huyn S, et al., 2010. A hypoxia- and α-fetoprotein-dependent oncolytic adenovirus exhibits specific killing of hepatocellular carcinomas. Clin Cancer Res 16(24): 6071–6082.  https://doi.org/10.1158/1078-0432.CCR-10-0664 PubMedCrossRefGoogle Scholar
  17. Lamarca A, Mendiola M, Barriuso J, 2016. Hepatocellular carcinoma: exploring the impact of ethnicity on molecular biology. Crit Revin Oncol/Hematol 105: 65–72.  https://doi.org/10.1016/j.critrevonc.2016.06.007 CrossRefGoogle Scholar
  18. Larson C, Oronsky B, Scicinski J, et al., 2015. Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget 6(24): 19976–19989.  https://doi.org/10.18632/oncotarget.5116 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Liu H, Zhang CX, Ma Y, et al., 2016. SphK1 inhibitor SKI II inhibits the proliferation of human hepatoma HepG2 cells via the Wnt5a/β-catenin signaling pathway. Life Sci 151: 23–29.  https://doi.org/10.1016/j.lfs.2016.02.098 PubMedCrossRefGoogle Scholar
  20. Liu HY, Han BJ, Zhong YX, et al., 2009. A three-plasmid system for construction of armed oncolytic adenovirus. J Virol Methods 162(1–2): 8–13.  https://doi.org/10.1016/j.jviromet.2009.07.011 PubMedCrossRefGoogle Scholar
  21. Liu YM, Zhang XD, Sun T, et al., 2016. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility. Oncotarget 7(16): 21404–21415.  https://doi.org/10.18632/oncotarget.7271 PubMedPubMedCentralGoogle Scholar
  22. Livak KJ, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the \({2^{ - {\rm{\Delta \Delta }}{C_{\rm{T}}}}}\) method. Methods 25(4): 402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  23. Nguyen A, Ho L, Wan Y, 2014. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 4: 145.  https://doi.org/10.3389/fonc.2014.00145 PubMedPubMedCentralGoogle Scholar
  24. Pan J, Tao YF, Zhou Z, et al., 2011. An novel role of sphingosine kinase-1 (SPHK1) in the invasion and metastasis of esophageal carcinoma. J Transl Med 9(1): 157.  https://doi.org/10.1186/1479-5876-9-157 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Rinninella E, Cerrito L, Spinelli I, et al., 2017. Chemotherapy for hepatocellular carcinoma: current evidence and future perspectives. J Clin Transl Hepatol 5(3): 235–248.  https://doi.org/10.14218/JCTH.2017.00002 PubMedPubMedCentralGoogle Scholar
  26. Singal AG, Nehra M, Adams-Huet B, et al., 2013. Detection of hepatocellular carcinoma at advanced stages among patients in the HALT-C trial: where did surveillance fail? Am J Gastroenterol 108(3): 425–432.  https://doi.org/10.1038/ajg.2012.449 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Small EJ, Carducci MA, Burke JM, et al., 2006. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 14(1): 107–117.  https://doi.org/10.1016/j.ymthe.2006.02.011 PubMedCrossRefGoogle Scholar
  28. Wang HX, Chen JM, Xu C, et al., 2017a. Cancer nanomedicines stabilized by Π-Π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations. Theranostics 7(15): 3638–3652.  https://doi.org/10.7150/thno.20028 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Wang HX, Lu ZJ, Wang LJ, et al., 2017b. New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity. Cancer Res 77(24): 6963–6974.  https://doi.org/10.1158/0008-5472.CAN-17-0984 PubMedCrossRefGoogle Scholar
  30. Wang HX, Zhou LQ, Xie K, et al., 2018. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nano-medicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics 8(14): 3949–3963.  https://doi.org/10.7150/thno.26161 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Wang LY, Zheng SS, 2018. Advances in predicting the prognosis of hepatocellular carcinoma recipients after liver transplantation. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 19(7): 497–504.  https://doi.org/10.1631/jzus.B1700156 CrossRefGoogle Scholar
  32. Wang YG, Liu T, Huang PP, et al., 2015. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 6(15): 13564–13578.  https://doi.org/10.18632/oncotarget.3769 PubMedPubMedCentralGoogle Scholar
  33. Wang ZD, Qu FY, Chen YY, et al., 2017. Involvement of microRNA-718, a new regulator of EGR3, in regulation of malignant phenotype of HCC cells. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 18(1): 27–36.  https://doi.org/10.1631/jzus.B1600205 CrossRefGoogle Scholar
  34. Wong J, Lee C, Zhang K, et al., 2012. Targeted oncolytic herpes simplex viruses for aggressive cancers. Curr Pharm Biotechnol 13(9): 1786–1794.  https://doi.org/10.2174/138920112800958751 PubMedCrossRefGoogle Scholar
  35. Xie HY, Xu X, Chen JM, et al., 2016. Rational design of multifunctional small-molecule prodrugs for simultaneous suppression of cancer cell growth and metastasis in vitro and in vivo. Chem Commun (Camb) 52(32): 5601–5604.  https://doi.org/10.1039/C5CC10367C CrossRefGoogle Scholar
  36. Xu L, Xu SJ, Wang HX, et al., 2018. Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: the combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl Mater Interfaces 10(4): 3229–3240.  https://doi.org/10.1021/acsami.7b14496 PubMedCrossRefGoogle Scholar
  37. Xu YZ, Dong BJ, Huang JW, et al., 2016. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression. Oncotarget 7(3): 3233–3244.  https://doi.org/10.18632/oncotarget.6564 PubMedGoogle Scholar
  38. Yang J, Li JJ, Dai WQ, et al., 2015. Golgi protein 73 as a biomarker for hepatocellular carcinoma: a diagnostic meta-analysis. Exp Ther Med 9(4): 1413–1420.  https://doi.org/10.3892/etm.2015.2231 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Yang L, Hu HL, Deng Y, et al., 2014. Role of SPHK1 regulates multi-drug resistance of small cell lung cancer and its clinical significance. Chin J Lung Cancer 17(11): 769–777 (in Chinese).  https://doi.org/10.3779/j.issn.1009-3419.2014.11.01 Google Scholar
  40. Yang XD, Pan LH, Wang L, et al., 2015. Systematic review of single large and/or multinodular hepatocellular carcinoma: surgical resection improves survival. Asian Pac J Cancer Prev 16(13): 5541–5547.  https://doi.org/10.7314/APJCP.2015.16.13.5541 PubMedCrossRefGoogle Scholar
  41. Zhang CX, Liu H, Gong YY, et al., 2014. Inhibitions of SphK1 inhibitor SKI II on cell cycle progression and cell invasion of hepatoma HepG2 cells. Acta Pharm Sin 49(2): 204–208 (in Chinese).Google Scholar
  42. Zhou Y, Yin X, Ying J, et al., 2012. Golgi protein 73 versus alpha-fetoprotein as a biomarker for hepatocellular carcinoma: a diagnostic meta-analysis. BMC Cancer 12: 17.  https://doi.org/10.1186/1471-2407-12-17 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Zhu LM, Wang Z, Lin YX, et al., 2015. Sphingosine kinase 1 enhances the invasion and migration of non-small cell lung cancer cells via the AKT pathway. Oncol Rep 33(3): 1257–1263.  https://doi.org/10.3892/or.2014.3683 PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GastroenterologyQilu Hospital of Shandong UniversityJinanChina
  2. 2.Department of GastroenterologyThe Second People’s Hospital of LiaochengLinqingChina

Personalised recommendations