Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 4, pp 332–342 | Cite as

Screening, purification, and characterization of an extracellular lipase from Aureobasidium pullulans isolated from stuffed buns steamers

  • Yang Li
  • Tong-jie Liu
  • Min-jie Zhao
  • Hui Zhang
  • Feng-qin FengEmail author


An extracellular lipase from Aureobasidium pullulans was obtained and purified with a specific activity of 17.7 U/mg of protein using ultrafiltration and a DEAE-Sepharose Fast Flow column. Characterization of the lipase indicated that it is a novel finding from the species A. pullulans. The molecular weight of the lipase was 39.5 kDa, determined by sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited its optimum activity at 40 °C and pH of 7. It also showed a remarkable stability in some organic solutions (30%, v/v) including n-propanol, isopropanol, dimethyl sulfoxide (DMSO), and hexane. The catalytic activity of the lipase was enhanced by Ca2+ and was slightly inhibited by Mn2+ and Zn2+ at a concentration of 10 mmol/L. The lipase was activated by the anionic surfactant SDS and the non-ionic surfactants Tween 20, Tween 80, and Triton X-100, but it was drastically inhibited by the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). Furthermore, the lipase was able to hydrolyze a wide variety of edible oils, such as peanut oil, corn oil, sunflower seed oil, sesame oil, and olive oil. Our study indicated that the lipase we obtained is a potential biocatalyst for industrial use.

Key words

Lipase Aureobasidium pullulans Purification Enzymatic characterization 


概 要

目 的

从出芽短梗霉所产的脂肪酶中筛选具有独特酶学 性质的脂肪酶


发现了一种新的产自出芽短梗霉的脂肪酶, 并对 其酶学性质进行了研究。

方 法

通过超滤和 DEAE-Sepharose Fast Flow 阴离子层 析柱方法对脂肪酶进行纯化, 随后分别用对硝基 酚邻酸盐(pNPP) 法对纯化得到的脂肪酶进行了 酶学性质研究, 并用酸碱中和法检测了脂肪酶对 可食用油脂的水解。

结 论

对分离纯化得到的脂肪酶的酶学性质研究表明, 该酶的分子量为39.5 kDa, 具有一个亚基, 为胞外酶。最佳催化温度为40 °C, 最佳催化pH 为7。该酶对一些有机溶剂、表面活性剂和离子具有优良的抗性。此外, 它可以水解常见的食用油。这些良好的特性使该脂肪酶有可能被应用于洗涤剂生产、生物柴油合成和食品制造等一些工业领域。


脂肪酶 出芽短梗霉 分离纯化 酶学性质表征 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonov VK, Dyakov VL, Mishin AA, et al., 1988. Catalytic activity and association of pancreatic lipase. Biochimie, 70(9):1235–1244. CrossRefGoogle Scholar
  2. Aouf C, Durand E, Lecomte J, et al., 2014. The use of lipases as biocatalysts for the epoxidation of fatty acids and phenolic compounds. Green Chem, 16(4):1740–1754. CrossRefGoogle Scholar
  3. Aref HL, Mosbah H, Fekih A, et al., 2014. Purification and biochemical characterization of lipase from Tunisian Euphorbia peplus latex. J Am Oil Chem Soc, 91(6): 943–951. CrossRefGoogle Scholar
  4. Bradford MM, Williams WL, 1976. New, rapid, sensitive method for protein determination. Fed Proc, 35(3):274.Google Scholar
  5. Chi ZM, Wang F, Chi Z, et al., 2009. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol, 82(5):793–804. CrossRefGoogle Scholar
  6. de Hoog GS, 1993. Evolution of black yeasts: possible adaptation to the human host. Antonie van Leeuwenhoek, 63(2):105–109. CrossRefGoogle Scholar
  7. Ebrahimpour A, Rahman RNZRA, Basri M, et al., 2011. High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM. Bioresour Technol, 102(13):6972–6981. CrossRefGoogle Scholar
  8. Fauzi AHM, Amin NAS, 2012. An overview of ionic liquids as solvents in biodiesel synthesis. Renewable Sustainable Energy Rev, 16(8):5770–5786. CrossRefGoogle Scholar
  9. Federici F, 1982. Extracellular enzymatic activities in Aureo-basidium pullulans. Mycologia, 74(5):738–743. CrossRefGoogle Scholar
  10. Ghasemi Y, Rasoul-Amini S, Kazemi A, et al., 2011. Isolation and characterization of some moderately halophilic bacteria with lipase activity. Microbiology, 80(4):483–487. CrossRefGoogle Scholar
  11. Hamdy HS, Abo-Tahon MA, 2012. Extracellular lipase of Aspergillus terreus var. africanus (CBS 130.55): production, purification and characterisation. Ann Microbiol, 62(4): 1723–1736. CrossRefGoogle Scholar
  12. Hasan F, Shah AA, Hameed A, 2006. Industrial applications of microbial lipases. Enzyme Microb Technol, 39(2):235–251. CrossRefGoogle Scholar
  13. Hasan F, Shah AA, Hameed A, 2009. Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv, 27(6):782–798. CrossRefGoogle Scholar
  14. Hiol A, Jonzo MD, Rugani N, et al., 2000. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Technol, 26(5–6):421–430. CrossRefGoogle Scholar
  15. Ji QC, Xiao SJ, He BF, et al., 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J Mol Catal B Enzym, 66(3–4):264–269. CrossRefGoogle Scholar
  16. Joseph B, Ramteke PW, 2013. Extracellular solvent stable cold-active lipase from psychrotrophic Bacillus sphaericus MTCC 7526: partial purification and characterization. Ann Microbiol, 63(1):363–370. CrossRefGoogle Scholar
  17. Kanjanavas P, Khuchareontaworn S, Khawsak P, et al., 2010. Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int J Mol Sci, 11(10):3783–3792. CrossRefGoogle Scholar
  18. Kudanga T, Mwenje E, Mandivenga F, et al., 2007. Esterases and putative lipases from tropical isolates of Aureobasidium pullulans. J Basic Microbiol, 47(2):138–147. CrossRefGoogle Scholar
  19. Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259):680–685. CrossRefGoogle Scholar
  20. Lailaja VP, Chandrasekaran M, 2013. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World J Microbiol Biotechnol, 29(8):1349–1360. CrossRefGoogle Scholar
  21. Leathers TD, Rich JO, Anderson AM, et al., 2013. Lipase production by diverse phylogenetic clades of Aureobasidium pullulans. Biotechnol Lett, 35(10):1701–1706. CrossRefGoogle Scholar
  22. Li M, Yang LR, Xu G, et al., 2013. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 42542013. Bioresour Technol, 148:114–120. CrossRefGoogle Scholar
  23. Li X, Qian P, Wu SG, et al., 2014. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles, 18(1):171–178. CrossRefGoogle Scholar
  24. Li Y, Cai HY, Zhao MJ, et al., 2015. Screening and identification of high-yield thermostable lipase producing microorganisms. Biotechnol Bull, 31(1): 144–150 (in Chinese). Google Scholar
  25. Liu ZQ, Li XY, Chi ZM, et al., 2008a. Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie Van Leeuwenhoek, 94(2):245–255. CrossRefGoogle Scholar
  26. Liu ZQ, Chi ZM, Wang L, et al., 2008b. Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem Eng J, 40(3):445–451. CrossRefGoogle Scholar
  27. Martinelle M, Holmquist M, Hult K, 1995. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta, 1258(3):272–276. CrossRefGoogle Scholar
  28. Mogensen JE, Sehgal P, Otzen DE, 2005. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents. Biochemistry, 44(5):1719–1730. CrossRefGoogle Scholar
  29. Peng Q, Wang X, Shang M, et al., 2014. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Fact, 13:1.
  30. Rahman RNZRA, Baharum SN, Basri M, et al., 2005. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem, 341(2): 267–274. CrossRefGoogle Scholar
  31. Ramakrishnan V, Goveas LC, Suralikerimath N, et al., 2016. Extraction and purification of lipase from Enterococcus faecium MTCC5695 by PEG/phosphate aqueous-two phase system (ATPS) and its biochemical characterization. Biocatal Agric Biotechnol, 6:19–27. CrossRefGoogle Scholar
  32. Ramani K, Kennedy LJ, Ramakrishnan M, et al., 2010. Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem, 45(10):1683–1691. CrossRefGoogle Scholar
  33. Ramírez-Zavala B, Mercado-Flores Y, Hernández-Rodríguez C, et al., 2004. Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiol Lett, 235(2):369–375. CrossRefGoogle Scholar
  34. Rúa ML, Díaz-Mauriñob T, Fernández VM, et al., 1993. Purification and characterization of two distinct lipases from Candida cylindracea. Biochim Biophys Acta, 1156(2): 181–189. CrossRefGoogle Scholar
  35. Salihu A, Alam MZ, 2015. Solvent tolerant lipases: a review. Process Biochem, 50(1):86–96. CrossRefGoogle Scholar
  36. Saxena RK, Sheoran A, Giri B, et al., 2003. Purification strategies for microbial lipases. J Microbiol Methods, 52(1):1–18. CrossRefGoogle Scholar
  37. Sharma R, Chisti Y, Banerjee UC, 2001. Production, purification, characterization, and applications of lipases. Biotechnol Adv, 19(8):627–662. CrossRefGoogle Scholar
  38. Shi H, Meng Y, Yang M, et al., 2014. Purification and characterization of a hydrolysis-resistant lipase from Aspergillus terreus. Biotechnol Appl Biochem, 61(2): 165–174. CrossRefGoogle Scholar
  39. Singh RS, Saini GK, 2008. Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol, 99(9):3896–3899. CrossRefGoogle Scholar
  40. Sulong MR, Rahnian RNZRA, Salleh AB, et al., 2006. A novel organic solvent tolerant lipase from Bacillus sphaericus 205y: extracellular expression of a novel OST-lipase gene. Protein Express Purif, 49(2):190–195. CrossRefGoogle Scholar
  41. Taher H, Al-Zuhair S, 2017. The use of alternative solvents in enzymatic biodiesel production: a review. Biofuels Bioprod Biorefin, 11(1):168–194. CrossRefGoogle Scholar
  42. Tang LL, Xia YL, Wu XL, et al., 2017. Screening and characterization of a novel thermostable lipase with detergent-additive potential from the metagenomic library of a mangrove soil. Gene, 625:64–71. CrossRefGoogle Scholar
  43. Tomke PD, Rathod VK, 2015. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason Sonochem, 27:241–246. CrossRefGoogle Scholar
  44. Ugur A, Sarac N, Boran R, et al., 2014. New lipase for biodiesel production: partial purification and characterization of LipSB 25-4. ISRN Biochem, 2014:289749. CrossRefGoogle Scholar
  45. Wang L, Chi ZM, Wang XH, et al., 2007. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann Microbiol, 57(4): 495–501. CrossRefGoogle Scholar
  46. Winkler UK, Stuckmann M, 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol, 138(3):663–670.Google Scholar
  47. Yang L, Dordick JS, Garde S, 2004. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J, 87(2):812–821. CrossRefGoogle Scholar
  48. Yuan DJ, Lan DM, Xin RP, et al., 2016. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnol Appl Biochem, 63(1): 41–50. CrossRefGoogle Scholar
  49. Yuan L, Sadiq FA, Liu TJ, et al., 2018. Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 19(8):630–642. CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.School of Management and E-businessZhejiang Gongshang UniversityHangzhouChina
  3. 3.Zhejiang Key Laboratory for Agro-Food ProcessingZhejiang UniversityHangzhouChina

Personalised recommendations