Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 8, pp 654–661 | Cite as

Ureaplasma urealyticum-derived lipid-associated membrane proteins introduce IL-6, IL-8, and TNF-α cytokines into human amniotic epithelial cells via Toll-like receptor 2

  • Guang-yong YeEmail author
  • Ke-yi Wang
  • Qiao-di Gui
  • Min Wang



The purpose of this study was to determine the role of Ureaplasma urealyticum-derived lipidassociated membrane proteins (LAMPs) in the host innate immune system, specifically their effect on Toll-like receptors (TLRs).


LAMPs were derived from U. urealyticum strains, and human amniotic epithelial cells (HAECs) were isolated from healthy full-term placentas. Cytokine concentrations were determined by enzyme-linked immunosorbent assay (ELISA) and TLR2 mRNA by real-time PCR. Expression of TLR2 was confirmed by Western blotting and immunohistochemistry.


LAMPs induced HAECs to produce inflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α. Cytokine production was reduced after blocking TLR2 using TLR2 inhibitor (anti-hTLR2-IgA).


LAMPs isolated from U. urealyticum induced TLR2-dependent up-regulation of inflammatory genes and cytokines in HAECs.

Key words

Ureaplasma urealyticum Lipid-associated membrane protein Human amniotic epithelial cell Toll-like receptor 2 

解脲脲原体脂质相关膜蛋白经Toll 样受体2 信号通路调控人羊膜上皮细胞诱导IL-6、IL-8 和TNF-α 的产生



探讨解脲脲原体(Ureaplasma urealyticum)及其脂质相关膜蛋白(LAMPs)作用于人羊膜上皮细胞(HAECs)过程中白介素6(IL-6)、IL-8 和肿瘤坏死因子α(TNF-α)的变化情况,阐明Toll样受体2(TLR2)的调控机制,明确解脲脲原体潜在的致病性。


从解脲脲原体诱导炎症反应的分子机制入手,提出TLR2 信号通路在其中的关键作用。


经TX-114 处理萃取解脲脲原体获得LAMPs,将LAMPs 和解脲脲原体分别感染HAECs,用酶联免疫吸附试验(ELISA)测定炎症细胞因子(IL-6、IL-8 和TNF-α);采用实时聚合酶链反应(real-time PCR)测定TLR2 mRNA 水平,用蛋白质印迹(Western blot)检测TLR2 的表达量;经TLR2 阻断剂(anti-hTLR2-IgA)处理后,测定相应炎症细胞因子。


解脲脲原体LAMPs 能诱导HAECs 的TLR2 表达上调和炎症因子增加,从而发生炎症反应;TLR2受阻断后,炎症因子表达减少,炎症水平下降。TLR2 在解脲脲原体LAMPs 感染HAECs 过程起关键作用。


解脲脲原体;脂质相关膜蛋白;人羊膜上皮细胞;Toll 样受体2


解脲脲原体 脂质相关膜蛋白 人羊膜上皮细胞 Toll 样受体2 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalaei-Andabili SH, Rezaei N, 2013. Toll like receptor (TLR)- induced differential expression of microRNAs (MiRs) and immune response against infection: a systematic review. J Infect, 67(4):251–264. CrossRefPubMedGoogle Scholar
  2. Abele-Horn M, Scholz M, Wolff C, et al., 2000. High-density vaginal Ureaplasma urealyticum colonization as a risk factor for chorioamnionitis and preterm delivery. Acta Obstet Gynecol Scand, 79(11):973–978. PubMedGoogle Scholar
  3. Capoccia R, Greub G, Baud D, 2013. Ureaplasma urealyticum, Mycoplasma hominis and adverse pregnancy outcomes. Curr Opin Infect Dis, 26(3):231–240. CrossRefPubMedGoogle Scholar
  4. Choi SY, Lim JW, Shimizu T, et al., 2012. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipidassociated membrane proteins from Mycoplasma pneumoniae. Inflamm Res, 61(5):493–501. CrossRefPubMedGoogle Scholar
  5. Daskalakis G, Thomakos N, Papapanagiotou A, et al., 2009. Amniotic fluid interleukin-18 at mid-trimester genetic amniocentesis: relationship to intraamniotic microbial invasion and preterm delivery. BJOG, 116(13):1743–1748. CrossRefPubMedGoogle Scholar
  6. Gerber S, Vial Y, Hohlfeld P, et al., 2003. Detection of Ureaplasma urealyticum in second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm labor and delivery. J Infect Dis, 187(3):518–521. CrossRefPubMedGoogle Scholar
  7. Glushkova OV, Parfenyuk SB, Khrenov MO, et al., 2013. Inhibitors of TLR-4, NF-κB, and SAPK/JNK signaling reduce the toxic effect of lipopolysaccharide on RAW 264.7 cells. J Immunotoxicol, 10(2):133–140. CrossRefPubMedGoogle Scholar
  8. He J, You XX, Zeng YH, et al., 2009. Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-κB through Toll-like receptors 1, 2, and 6 and CD14 in a MyD88-dependent pathway. Clin Vaccine Immunol, 16(12):1750–1757. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Kannan S, Dai H, Navath RS, et al., 2012. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci Transl Med, 4(130):130ra46. CrossRefGoogle Scholar
  10. Kwak DW, Hwang HS, Kwon JY, et al., 2014. Co-infection with vaginal Ureaplasma urealyticum and Mycoplasma hominis increases adverse pregnancy outcomes in patients with preterm labor or preterm premature rupture of membranes. J Matern Fetal Neonatal Med, 27(4):333–337. CrossRefPubMedGoogle Scholar
  11. Liu T, Cheng WW, Huang YY, et al., 2012. Human amniotic epithelial cell feeder layers maintain human IPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res, 318(4):424–434. CrossRefPubMedGoogle Scholar
  12. Lyu A, Chen JJ, Wang HC, et al., 2017. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharideinduced inflammatory injury. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 18(6):481–491. CrossRefGoogle Scholar
  13. Romero R, Gómez R, Chaiworapongsa T, et al., 2001. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol, 15(S2):41–56. CrossRefPubMedGoogle Scholar
  14. Shimizu T, Kida Y, Kuwano K, 2008. A triacylated lipoprotein from Mycoplasma genitalium activates NF-κB through Toll-like receptor 1 (TLR1) and TLR2. Infect Immun, 76(8):3672–3678. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sweet L, Schorey JS, 2006. Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol, 80(2):415–423. CrossRefPubMedGoogle Scholar
  16. Triantafilou M, de Glanville B, Aboklaish AF, et al., 2013. Synergic activation of Toll-Like Receptor (TLR) 2/6 and 9 in response to Ureaplasma parvum & urealyticum in human amniotic epithelial cells. PLoS ONE, 8(4):e61199. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Viscardi RM, 2010. Ureaplasma species: role in diseases of prematurity. Clin Perinatol, 37(2):393–409. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Wang Y, Liu SL, Li Y, et al., 2016. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via Toll-like receptor 2 and MyD88. Dev Comp Immunol, 55:111–118. CrossRefPubMedGoogle Scholar
  19. Wenstrom KD, Andrews WW, Tamura T, et al., 1996. Elevated amniotic fluid interleukin-6 levels at genetic amniocentesis predict subsequent pregnancy loss. Am J Obstet Gynecol, 175(4):830–833. CrossRefPubMedGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Women’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Central LaboratoryHangzhou First People’s HospitalHangzhouChina
  3. 3.Department of Clinical LaboratoryShaanxi Provincial People’s HospitalXi’anChina

Personalised recommendations