Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 2, pp 170–179 | Cite as

In vitro culture of mammalian inner ear hair cells

  • Lu-wen Zhang
  • Xiao-hui Cang
  • Ye ChenEmail author
  • Min-xin Guan
Report
  • 25 Downloads

Abstract

Auditory function in vertebrates depends on the transduction of sound vibrations into electrical signals by inner ear hair cells. In general, hearing loss resulting from hair cell damage is irreversible because the human ear has been considered to be incapable of regenerating or repairing these sensory elements following severe injury. Therefore, regeneration and protection of inner ear hair cells have become an exciting, rapidly evolving field of research during the last decade. However, mammalian auditory hair cells are few in number, experimentally inaccessible, and barely proliferate postnatally in vitro. Various in vitro primary culture systems of inner ear hair cells have been established by different groups, although many challenges remain unresolved. Here, we briefly explain the structure of the inner ear, summarize the published methods of in vitro hair cell cultures, and propose a feasible protocol for culturing these cells, which gave satisfactory results in our study. A better understanding of in vitro hair cell cultures will substantially facilitate research involving auditory functions, drug development, and the isolation of critical molecules involved in hair cell biology.

Key words

Inner ear Hair cell In vitro culture system 

哺乳动物内耳毛细胞的体外培养

概 要

由于内耳的血脑屏障作用, 药物渗入到内耳比较困难。 新生小鼠内耳毛细胞的体外培养体系的建立, 为体外进行支持细胞转分化机制的研究和进 行体外药物损伤毛细胞实验等提供实验技术的前提。

为了避免毛细胞体外培养过程中污染杂菌, 解剖内耳耳蜗的整个过程十分重要。 处死小鼠后, 将其浸泡在 75%酒精中 1~3 分钟, 防止鼠毛污染培养基。 打开内耳耳蜗之前, 选用添加了青霉素的磷酸盐缓冲液 (1× PBS) ; 培养过程中使用的是仅仅添加青霉素的培养基来减少对毛细胞的损伤。 在基底膜培养的第一步, 选用 DMEM (包含 5%马血清体积比和 5%胎牛血清) 作为组织粘附培养的培养基, 保证足够的营养, 同时更好地维持整个基底膜培养状态下的形态。 在之后的培养中, 选用 DMEM (添加了 10%胎牛血清、 1%N2 和 1%B27) 作为长期的培养基。 使用含有表皮生长因子的 N2 和 B27 的培养基进行基底膜以及椭圆囊之后的培养, 有助于维持毛细胞的体外生长时间。 选用鼠尾胶包被盖玻片后培养,可以增加基底膜和椭圆囊的粘附作用, 保证毛细胞静纤毛的向上生长。

该文章展现了哺乳动物毛细胞的体外培养的具体方法, 能够较好地维持耳蜗基底膜在体外培养的形态, 并增加毛细胞体外培养的存活时间。

关键词

内耳 毛细胞 体外培养 

References

  1. Abdouh A, Despres G, Romand R, 1993. Hair cell overproduction in the developing mammalian cochlea in culture. Neuroreport, 5(1):33–36. https://doi.org/10.1097/00001756-199310000-00008 CrossRefGoogle Scholar
  2. Anniko M, van de Water TR, 1978. Organ culture of the postnatal mouse crista ampullaris part I. Arch Oto-Rhino-Laryngol, 220(1-2):129–132. https://doi.org/10.1007/BF00456306 CrossRefGoogle Scholar
  3. Betlejewski S, 2008. Science and life—the history of marquis Alfonso Corti. Otolaryngol Pol, 62(3):344–347. https://doi.org/10.1016/S0030-6657(08)70268-3 CrossRefGoogle Scholar
  4. Bird JE, Daudet N, Warchol ME, et al., 2010. Supporting cells eliminate dying sensory hair cells to maintain epithelial integrity in the avian inner ear. J Neurosci, 30(37): 12545–12556. https://doi.org/10.1523/JNEUROSCI.3042-10.2010 CrossRefGoogle Scholar
  5. Brandon CS, Voelkel-Johnson C, May LA, et al., 2012. Dissection of adult mouse utricle and adenovirus-mediated supporting-cell infection. J Vis Exp, (61):e3734. https://doi.org/10.3791/3734 Google Scholar
  6. Bucks SA, Cox BC, Vlosich BA, et al., 2017. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. eLife, 6:e18128. https://doi.org/10.7554/eLife.18128 CrossRefGoogle Scholar
  7. Chang DT, Chai R, DiMarco R, et al., 2015. Protein-engineered hydrogel encapsulation for 3-D culture of murine cochlea. Otol Neurotol, 36(3):531–538. https://doi.org/10.1097/MAO.0000000000000518 CrossRefGoogle Scholar
  8. Corns LF, Johnson SL, Kros CJ, et al., 2014. Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci USA, 111(41):14918–14923. https://doi.org/10.1073/pnas.1409920111 CrossRefGoogle Scholar
  9. Ding DL, Stracher A, Salvi RJ, 2002. Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res, 164(1-2):115–126. https://doi.org/10.1016/S0378-5955(01)00417-8 CrossRefGoogle Scholar
  10. Ding DL, He JC, Allman BL, et al., 2011. Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res, 282(1-2): 196–203. https://doi.org/10.1016/j.heares.2011.08.002 CrossRefGoogle Scholar
  11. Ding DL, Qi WD, Yu DZ, et al., 2013. Addition of exogenous NAD+ prevents mefloquine-induced neuroaxonal and hair cell degeneration through reduction of caspase-3-mediated apoptosis in cochlear organotypic cultures. PLoS ONE, 8(11):e79817. https://doi.org/10.1371/journal.pone.0079817 CrossRefGoogle Scholar
  12. Dror AA, Avraham KB, 2009. Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet, 43:411–437. https://doi.org/10.1146/annurev-genet-102108-134135 CrossRefGoogle Scholar
  13. Eatock RA, 2000. Adaptation in hair cells. Annu Rev Neurosci, 23:285–314. https://doi.org/10.1146/annurev.neuro.23.1.285 CrossRefGoogle Scholar
  14. Friedman TB, Griffith AJ, 2003. Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet, 4:341–402. https://doi.org/10.1146/annurev.genom.4.070802.110347 CrossRefGoogle Scholar
  15. Furness DN, Richardson GP, Russell IJ, 1989. Stereociliary bundle morphology in organotypic cultures of the mouse cochlea. Hear Res, 38(1-2):95–109. https://doi.org/10.1016/0378-5955(89)90131-7 CrossRefGoogle Scholar
  16. Gaboyard S, Chabbert C, Travo C, et al., 2005. Threedimensional culture of newborn rat utricle using an extracellular matrix promotes formation of a cyst. Neuroscience, 133(1):253–265. https://doi.org/10.1016/j.neuroscience.2005.02.011 CrossRefGoogle Scholar
  17. Géléoc GS, Holt JR, 2014. Sound strategies for hearing restoration. Science, 344(6184):1241062. https://doi.org/10.1126/science.1241062 CrossRefGoogle Scholar
  18. Gubb D, García-Bellido A, 1982. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol, 68(1): 37–57.Google Scholar
  19. Hawkins JE Jr, Johnsson LG, Aran JM, 1969. Comparative tests of gentamicin ototoxicity. J Infect Dis, 119(4-5): 417–426. https://doi.org/10.1093/infdis/119.4-5.417 CrossRefGoogle Scholar
  20. Hudspeth AJ, 1989a. How the ear’s works work. Nature, 341(6241):397–404. https://doi.org/10.1038/341397a0 CrossRefGoogle Scholar
  21. Hudspeth AJ, 1989b. Mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Prog Brain Res, 80: 129–135. https://doi.org/10.1016/S0079-6123(08)62206-2 CrossRefGoogle Scholar
  22. Hudspeth AJ, 1997. How hearing happens. Neuron, 19(5): 947–950. https://doi.org/10.1016/S0896-6273(00)80385-2 CrossRefGoogle Scholar
  23. Kalinec GM, Webster P, Lim DJ, et al., 2003. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol, 8(4):177–189. https://doi.org/10.1159/000071059 CrossRefGoogle Scholar
  24. Koehler KR, Hashino E, 2014. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc, 9(6):1229–1244. https://doi.org/10.1038/nprot.2014.100 CrossRefGoogle Scholar
  25. Landegger LD, Dilwali S, Stankovic KM, 2017. Neonatal murine cochlear explant technique as an in vitro screening tool in hearing research. J Vis Exp, (124):e55704. https://doi.org/10.3791/55704 Google Scholar
  26. Lelli A, Asai Y, Forge A, et al., 2009. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol, 101(6):2961–2973. https://doi.org/10.1152/jn.00136.2009 CrossRefGoogle Scholar
  27. Li-Korotky HS, 2012. Age-related hearing loss: quality of care for quality of life. Gerontologist, 52(2):265–271. https://doi.org/10.1093/geront/gnr159 CrossRefGoogle Scholar
  28. Lin JC, Zhang XD, Wu FF, et al., 2015. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle. Front Cell Neurosci, 9:113. https://doi.org/10.3389/fncel.2015.00113 Google Scholar
  29. Malgrange B, Thiry M, van de Water TR, et al., 2002. Epithelial supporting cells can differentiate into outer hair cells and Deiters’ cells in the cultured organ of Corti. Cell Mol Life Sci, 59(10):1744–1757. https://doi.org/10.1007/PL00012502 CrossRefGoogle Scholar
  30. Matz G, Rybak L, Roland PS, et al., 2004. Ototoxicity of ototopical antibiotic drops in humans. Otolaryngol-Head Neck Surg, 130(S3):S79–S82. https://doi.org/10.1016/j.otohns.2003.12.007 CrossRefGoogle Scholar
  31. May LA, Kramarenko II, Brandon CS, et al., 2013. Inner ear supporting cells protect hair cells by secreting HSP70. J Clin Invest, 123(8):3577–3587. https://doi.org/10.1172/JCI68480 CrossRefGoogle Scholar
  32. May-Simera H, 2016. Evaluation of planar-cell-polarity phenotypes in ciliopathy mouse mutant cochlea. J Vis Exp, (108):e53559. https://doi.org/10.3791/53559 Google Scholar
  33. Meiteles LZ, Raphael Y, 1994. Scar formation in the vestibular sensory epithelium after aminoglycoside toxicity. Hear Res, 79(1-2):26–38. https://doi.org/10.1016/0378-5955(94)90124-4 CrossRefGoogle Scholar
  34. Meyer-Bisch C, 2005. Measuring noise. Med Sci (Paris), 21(5): 546–550. https://doi.org/10.1051/medsci/2005215546 CrossRefGoogle Scholar
  35. Oesterle EC, Rubel EW, 1993. Postnatal production of supporting cells in the chick cochlea. Hear Res, 66(2):213–224. https://doi.org/10.1016/0378-5955(93)90141-M CrossRefGoogle Scholar
  36. Oesterle EC, Tsue TT, Reh TA, et al., 1993. Hair-cell regeneration in organ cultures of the postnatal chicken inner ear. Hear Res, 70(1):85–108. https://doi.org/10.1016/0378-5955(93)90054-5 CrossRefGoogle Scholar
  37. Ou HC, Lin V, Rubel EW, 2013. “In-bone” utricle cultures— a simplified, atraumatic technique for in situ cultures of the adult mouse (Mus musculus) utricle. Otol Neurotol, 34(2):353–359. https://doi.org/10.1097/MAO.0b013e31827ca330 CrossRefGoogle Scholar
  38. Parker M, Brugeaud A, Edge AS, 2010. Primary culture and plasmid electroporation of the murine organ of Corti. J Vis Exp, (36):e1685. https://doi.org/10.3791/1685 Google Scholar
  39. Qian D, Jones C, Rzadzinska A, et al., 2007. Wnt5a functions in planar cell polarity regulation in mice. Dev Biol, 306(1): 121–133. https://doi.org/10.1016/j.ydbio.2007.03.011 CrossRefGoogle Scholar
  40. Quint E, Hackney CM, Furness DN, 1996. The effect of neomycin on organotypic cultures of the adult guinea-pig utricle. Ann N Y Acad Sci, 781(1):683–685. https://doi.org/10.1111/j.1749-6632.1996.tb15759.x CrossRefGoogle Scholar
  41. Rastel D, Abdouh A, Dahl D, et al., 1993. An original organotypic culture method to study the organ of Corti of the newborn rat in vitro. J Neurosci Methods, 47(1-2):123–131. https://doi.org/10.1016/0165-0270(93)90028-P CrossRefGoogle Scholar
  42. Roberson DW, Rubel EW, 1994. Cell division in the gerbil cochlea after acoustic trauma. Am J Otol, 15(1):28–34.Google Scholar
  43. Romand R, Chardin S, 1999. Effects of growth factors on the hair cells after ototoxic treatment of the neonatal mammalian cochlea in vitro. Brain Res, 825(1-2):46–58. https://doi.org/10.1016/S0006-8993(99)01211-1 CrossRefGoogle Scholar
  44. Ruben RJ, 1967. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol, Suppl 220:1–44.Google Scholar
  45. Shang JL, Cafaro J, Nehmer R, et al., 2010. Supporting cell division is not required for regeneration of auditory hair cells after ototoxic injury in vitro. J Assoc Res Otolaryngol, 11(2):203–222. https://doi.org/10.1007/s10162-009-0206-7 CrossRefGoogle Scholar
  46. Smith ME, Groves AK, Coffin AB, 2016. Editorial: sensory hair cell death and regeneration. Front Cell Neurosci, 10:208. https://doi.org/10.3389/fncel.2016.00208 CrossRefGoogle Scholar
  47. Sobkowicz HM, Bereman B, Rose JE, 1975. Organotypic development of the organ of Corti in culture. J Neurocytol, 4(5):543–572. https://doi.org/10.1007/BF01351537 CrossRefGoogle Scholar
  48. Spencer NJ, Cotanche DA, Klapperich CM, 2008. Peptide-and collagen-based hydrogel substrates for in vitro culture of chick cochleae. Biomaterials, 29(8):1028–1042. https://doi.org/10.1016/j.biomaterials.2007.11.006 CrossRefGoogle Scholar
  49. Taura A, Nakashima N, Ohnishi H, et al., 2016. Regenerative therapy for vestibular disorders using human induced pluripotent stem cells (iPSCs): neural differentiation of human iPSC-derived neural stem cells after in vitro transplantation into mouse vestibular epithelia. Acta Otolaryngol, 136(10):999–1005. https://doi.org/10.1080/00016489.2016.1183169 CrossRefGoogle Scholar
  50. von Békésy G, 1956. Current status of theories of hearing. Science, 123(3201):779–783. https://doi.org/10.1126/science.123.3201.779 CrossRefGoogle Scholar
  51. Werner M, van de Water TR, Andersson T, et al., 2012. Morphological and morphometric characteristics of vestibular hair cells and support cells in long term cultures of rat utricle explants. Hear Res, 283(1-3):107–116. https://doi.org/10.1016/j.heares.2011.11.003 CrossRefGoogle Scholar
  52. Werner M, van de Water TR, Hammarsten P, et al., 2015. Morphological and morphometric characterization of direct transdifferentiation of support cells into hair cells in ototoxin-exposed neonatal utricular explants. Hear Res, 321:1–11. https://doi.org/10.1016/j.heares.2014.12.011 CrossRefGoogle Scholar
  53. White PM, Doetzlhofer A, Lee YS, et al., 2006. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature, 441(7096):984–987. https://doi.org/10.1038/nature04849 CrossRefGoogle Scholar
  54. Yamahara K, Yamamoto N, Nakagawa T, et al., 2015. Insulinlike growth factor 1: a novel treatment for the protection or regeneration of cochlear hair cells. Hear Res, 330:2–9. https://doi.org/10.1016/j.heares.2015.04.009 CrossRefGoogle Scholar
  55. Yamashita T, Vosteen KH, 1975. Tissue culture of the organ of Corti and the isolated hair cells from the newborn guinea pig. Acta Otolaryngol, 79(S330):77–90. https://doi.org/10.3109/00016487509121279 CrossRefGoogle Scholar
  56. Zhao HB, 2001. Long-term natural culture of cochlear sensory epithelia of guinea pigs. Neurosci Lett, 315(1-2):73–76. https://doi.org/10.1016/S0304-3940(01)02357-6 CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Medical Genetics and Genomics, the Children’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Institute of Genetics, Zhejiang University and Department of GeneticsZhejiang University School of MedicineHangzhouChina

Personalised recommendations