Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 19, Issue 11, pp 818–828 | Cite as

Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study

  • Hemanth Tumkur Lakshmikantha
  • Naresh Kumar Ravichandran
  • Mansik Jeon
  • Jeehyun Kim
  • Hyo-sang Park
Article
  • 6 Downloads

Abstract

Objectives

The study was done to evaluate the efficacy of optical coherence tomography (OCT), to detect and analyze the microdamage occurring around the microimplant immediately following its placement, and to compare the findings with micro-computed tomography (μCT) images of the samples to validate the result of the present study.

Methods

Microimplants were inserted into bovine bone samples. Images of the samples were obtained using OCT and μCT. Visual comparisons of the images were made to evaluate whether anatomical details and microdamage induced by microimplant insertion were accurately revealed by OCT.

Results

The surface of the cortical bone with its anatomical variations is visualized on the OCT images. Microdamage occurring on the surface of the cortical bone around the microimplant can be appreciated in OCT images. The resulting OCT images were compared with the μCT images. A high correlation regarding the visualization of individual microcracks was observed. The depth penetration of OCT is limited when compared to μCT.

Conclusions

OCT in the present study was able to generate high-resolution images of the microdamage occurring around the microimplant. Image quality at the surface of the cortical bone is above par when compared with μCT imaging, because of the inherent high contrast and high-resolution quality of OCT systems. Improvements in the imaging depth and development of intraoral sensors are vital for developing a real-time imaging system and integrating the system into orthodontic practice.

Key words

Optical coherence tomography Microimplant Cortical bone Micro-computed tomography 

使用光学相干成像技术对皮质骨植入微种植体产生微创的评估

中文概要

目的

评估光学相干成像技术(OCT)用于检测植入微种植体产生微创的效果, 并将其与显微计算机断层扫描技术(μCT)进行对比, 进一步验证OCT的检测效果。

创新点

采用两种成像技术进行比对, 共同验证OCT的准确性和可行性。

方法

将微种植体植入牛骨样品中, 使用OCT和μCT成像。通过对比两种技术的成像来分析解剖学细节和微创面, 从而判断OCT是否能够准确反映微种植体植入带来的微创。

结论

OCT能够生成高分辨率图片, 清晰地反映微种植体周围产生的微创裂纹。与μCT生成的图像相比, 由于OCT系统的高对比度和高分辨率, OCT所生产的皮质骨表面图像质量高于正常标准。提高成像深度和开发口腔内部传感器对于发展实时成像系统并将其用于畸齿校正具有重大意义。

关键词

光学相干断层成像技术 微种植体 皮质骨 显 微计算机断层扫描技术 

CLC number

R783 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakhsh TA, Sadr A, Shimada Y, et al., 2013. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J Dent, 41(1):60–70. https://doi.org/10.1016/j.jdent.2012.10.003CrossRefGoogle Scholar
  2. Bredbenner TL, Haug RH, 2000. Substitutes for human cadaveric bone in maxillofacial rigid fixation research. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 90(5):574–580. https://doi.org/10.1067/moe.2000.111025CrossRefGoogle Scholar
  3. Carrasco-Zevallos OM, Keller B, Viehland C, et al., 2016. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep, 6:31689. https://doi.org/10.1038/srep31689CrossRefGoogle Scholar
  4. Choi KS, Wijesinghe RE, Lee C, et al., 2017. In vivo observation of metamorphosis of Plodia interpunctella Hübner using three-dimensional optical coherence tomography. Entomol Res, 47(4):256–262. https://doi.org/10.1111/1748-5967.12220CrossRefGoogle Scholar
  5. Fercher AF, Mengedoht K, Werner W, 1988. Eye-length measurement by interferometry with partially coherent light. Opt Lett, 13(3):186–188. https://doi.org/10.1364/OL.13.000186CrossRefGoogle Scholar
  6. Fernandes DJ, Elias CN, de Oliveira Ruellas AC, 2015. Influence of screw length and bone thickness on the stability of temporary implants. Materials, 8(9):6558–6569. https://doi.org/10.3390/ma8095322CrossRefGoogle Scholar
  7. Hsu JT, Chen YJ, Ho JT, et al., 2014. A comparison of micro-CT and dental CT in assessing cortical bone morphology and trabecular bone microarchitecture. PLoS ONE, 9(9):e107545. https://doi.org/10.1371/journal.pone.0107545CrossRefGoogle Scholar
  8. Huang D, Swanson EA, Lin CP, et al., 1991. Optical coherence tomography. Science, 254(5035):1178–1181. https://doi.org/10.1126/science.1957169CrossRefGoogle Scholar
  9. Katsumata A, Hirukawa A, Okumura S, et al., 2007. Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 104(6):829–836. https://doi.org/10.1016/j.tripleo.2006.12.005CrossRefGoogle Scholar
  10. Koprowski R, Machoy M, Woźniak K, et al., 2014. Automatic method of analysis of OCT images in the assessment of the tooth enamel surface after orthodontic treatment with fixed braces. Biomed Eng Online, 13:48. https://doi.org/10.1186/1475-925X-13-48CrossRefGoogle Scholar
  11. Lee NK, Baek SH, 2010. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofacial Orthop, 138(1):8.e1–8.e8. https://doi.org/10.1016/j.ajodo.2010.02.019CrossRefGoogle Scholar
  12. Melsen B, Costa A, 2000. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res, 3(1):23–28. https://doi.org/10.1034/j.1600-0544.2000.030105.xCrossRefGoogle Scholar
  13. Motoyoshi M, Inaba M, Ono A, et al., 2009. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg, 38(1):13–18. https://doi.org/10.1016/j.ijom.2008.09.006CrossRefGoogle Scholar
  14. Nackaerts O, Maes F, Yan H, et al., 2011. Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res, 22(8):873–879. https://doi.org/10.1111/j.1600-0501.2010.02076.xCrossRefGoogle Scholar
  15. Nguyen MV, Codrington J, Fletcher L, et al., 2017. Influence of cortical bone thickness on miniscrew microcrack formation. Am J Orthod Dentofacial Orthop, 152(3): 301–311. https://doi.org/10.1016/j.ajodo.2016.12.028CrossRefGoogle Scholar
  16. Park HS, Jeong SH, Kwon OW, 2006. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop, 130(1): 18–25. https://doi.org/10.1016/j.ajodo.2004.11.032CrossRefGoogle Scholar
  17. Park JY, Chung JH, Lee JS, et al., 2017. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study. J Periodontal Implant Sci, 47(1):30–40. https://doi.org/10.5051/jpis.2017.47.1.30CrossRefGoogle Scholar
  18. Pithon MM, de Jesus Santos M, de Souza CA, et al., 2015. Effectiveness of fluoride sealant in the prevention of carious lesions around orthodontic brackets: an OCT evaluation. Dental Press J Orthod, 20(6):37–42. https://doi.org/10.1590/2177-6709.20.6.037-042.oarCrossRefGoogle Scholar
  19. Ravichandran NK, Wijesinghe RE, Shirazi MF, et al., 2016a. Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer. J Biomed Opt, 21(7):076005. https://doi.org/10.1117/1.JBO.21.7.076005CrossRefGoogle Scholar
  20. Ravichandran NK, Wijesinghe RE, Shirazi MF, et al., 2016b. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J Spectrosc, 2016:1093734. https://doi.org/10.1155/2016/1093734Google Scholar
  21. Ravichandran NK, Wijesinghe RE, Lee SY, et al., 2017. Non-destructive analysis of the internal anatomical structures of mosquito specimens using optical coherence tomography. Sensors (Basel), 17(8):1897. https://doi.org/10.3390/s17081897CrossRefGoogle Scholar
  22. Seeliger J, Machoy M, Koprowski R, et al., 2017. Enamel thickness before and after orthodontic treatment analysed in optical coherence tomography. Biomed Res Int, 2017: 8390575. https://doi.org/10.1155/2017/8390575CrossRefGoogle Scholar
  23. Shank SB, Beck FM, D'Atri AM, et al., 2012. Bone damage associated with orthodontic placement of miniscrew implants in an animal model. Am J Orthod Dentofacial Orthop, 141(4):412–418. https://doi.org/10.1016/j.ajodo.2011.10.021CrossRefGoogle Scholar
  24. Shirazi MF, Park K, Wijesinghe RE, et al., 2016. Fast industrial inspection of optical thin film using optical coherence tomography. Sensors (Basel), 16(10):1598. https://doi.org/10.3390/s16101598CrossRefGoogle Scholar
  25. Shirazi MF, Wijesinghe RE, Ravichandran NK, et al., 2017. Dual-path handheld system for cornea and retina imaging using optical coherence tomography. Opt Rev, 24(2): 219–225. https://doi.org/10.1007/s10043-016-0288-5CrossRefGoogle Scholar
  26. Wawrzinek C, Sommer T, Fischer-Brandies H, 2008. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. J Orofac Orthop, 69(2):121–134. https://doi.org/10.1007/s00056-008-0742-5CrossRefGoogle Scholar
  27. Wijesinghe RE, Cho NH, Park K, et al., 2016. Bio-photonic detection and quantitative evaluation method for the progression of dental caries using optical frequencydomain imaging method. Sensors (Basel), 16(12):2076. https://doi.org/10.3390/s16122076CrossRefGoogle Scholar
  28. Wijesinghe RE, Lee SY, Kim P, et al., 2017. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J Biomed Opt, 22(9): 091502. https://doi.org/10.1117/1.JBO.22.9.091502CrossRefGoogle Scholar
  29. Wilmes B, Rademacher C, Olthoff G, et al., 2006. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop, 67(3):162–174. https://doi.org/10.1007/s00056-006-0611-zCrossRefGoogle Scholar
  30. Woodall N, Tadepalli SC, Qian F, et al., 2011. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop, 139(2):e147–e152. https://doi.org/10.1016/j.ajodo.2010.08.017CrossRefGoogle Scholar
  31. Yadav S, Upadhyay M, Liu S, et al., 2012. Microdamage of the cortical bone during mini-implant insertion with selfdrilling and self-tapping techniques: a randomized controlled trial. Am J Orthod Dentofacial Orthop, 141(5):538–546. https://doi.org/10.1016/j.ajodo.2011.12.016CrossRefGoogle Scholar
  32. Zhang Q, Lee CS, Chao J, et al., 2016. Wide-field optical coherence tomography based microangiography for retinal imaging. Sci Rep, 6:22017. https://doi.org/10.1038/srep22017CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Orthodontics, School of DentistryKyungpook National UniversityDaeguKorea
  2. 2.School of Electronics Engineering, College of IT EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations