Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 2, pp 164–169 | Cite as

New SNP variants of MARVELD2 (DFNB49) associated with non-syndromic hearing loss in Chinese population

  • Jing Zheng
  • Wen-fang Meng
  • Chao-fan Zhang
  • Han-qing Liu
  • Juan Yao
  • Hui Wang
  • Ye ChenEmail author
  • Min-xin Guan
Correspondence
  • 24 Downloads

中文概要

目 的

探究 MARVELD2 在中国非综合征耳聋 (NSHL) 人群中的突变频谱和突变频率。

创新点

发现 MARVELD2 突变频谱具有明显种族特异性。 中国 NSHL 人群中的突变位点及频率不同于已报道的其他人群, 并首次筛选到新致聋候选突变 MARVELD2 c.730G>A。 本研究有助于进一步阐释 MARVELD2 在 NSHL 中的作用。

方 法

收集 283 例 NSHL 患者外周血, 提取基因组 DNA, 涉及 9 对引物覆盖 MARVELD2 基因编码区, 经聚合酶链反应 (PCR) 扩增后 Sanger 测序。 测序结果与参考序列比对, 获得的 MARVELD2 变异位点通过正常人群频率比较、 氨基酸保守性分析、 氨基酸性质分析、 SIFT 和 PolyPhen 有害性预测及蛋白结构功能预测分析等进一步筛选得到耳聋候选突变位点。

结论

中国 NSHL 人群的 MARVELD2 突变位点与巴基斯坦人群, 以及斯洛伐克、 匈牙利和捷克罗马人群不同, 具有明显的种族特异性。 本研究在 283 个 NSHL 病例中共鉴定了 11 个变异位点。 其中, c.730G>A 突变可能影响 MARVELD2 蛋白的正常功能, 与 NSHL 致病有较高的相关性, 是一个候选致聋突变。

中国人群中非综合征耳聋相关 MARVELD2 (DFNB49)基因新单核苷酸多态性位点分析

关键词

MARVELD2 非综合征耳聋 (NSHL) 单核苷 酸多态性位点 

Notes

Acknowledgements

We thank the patients and their families for the participation in this study.

Supplementary material

11585_2018_308_MOESM1_ESM.pdf (136 kb)
New SNP variants of MARVELD2 (DFNB49) associated with non-syndromic hearing loss in Chinese population

References

  1. Adzhubei I, Jordan DM, Sunyaev SR, 2013. Predicting functional effect of human missense mutations using polyphen–2. Curr Protoc Hum Genet, 76(1):7.20.1–7.20.41. https://doi.org/10.1002/0471142905.hg0720s76Google Scholar
  2. Babanejad M, Fattahi Z, Bazazzadegan N, et al., 2012. A comprehensive study to determine heterogeneity of autosomal recessive nonsyndromic hearing loss in Iran. Am J Med Genet A, 158A(10):2485–2492. https://doi.org/10.1002/ajmg.a.35572CrossRefGoogle Scholar
  3. Chasman D, Adams RM, 2001. Predicting the functional consequences of non–synonymous single nucleotide polymorphisms: structure–based assessment of amino acid variation. J Mol Biol, 307(2):683–706. https://doi.org/10.1006/jmbi.2001.4510CrossRefGoogle Scholar
  4. Chishti MS, Bhatti A, Tamim S, et al., 2008. Splice–site mutations in the TRIC gene underlie autosomal recessive nonsyndromic hearing impairment in Pakistani families. J Hum Genet, 53(2):101–105. https://doi.org/10.1007/s10038–007–0209–3CrossRefGoogle Scholar
  5. Dror AA, Avraham KB, 2009. Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet, 43:411–437. https://doi.org/10.1146/annurev–genet–102108–134135CrossRefGoogle Scholar
  6. Dror AA, Avraham KB, 2010. Hearing impairment: a panoply of genes and functions. Neuron, 68(2):293–308. https://doi.org/10.1016/j.neuron.2010.10.011CrossRefGoogle Scholar
  7. Higashi T, Lenz DR, Furuse M, et al., 2013. A “Tric” to tighten cell–cell junctions in the cochlea for hearing. J Clin Invest, 123(9):3712–3715. https://doi.org/10.1172/JCI69651CrossRefGoogle Scholar
  8. Kitajiri SI, Furuse M, Morita K, et al., 2004. Expression patterns of claudins, tight junction adhesion molecules, in the inner ear. Hear Res, 187(1–2): 25–34. https://doi.org/10.1016/s0378–5955(03)00338–1CrossRefGoogle Scholar
  9. Krug SM, Amasheh S, Richter JF, et al., 2009. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell, 20(16):3713–3724. https://doi.org/10.1091/mbc.E09–01–0080CrossRefGoogle Scholar
  10. Mašindová I, Šoltýsová A, Varga L, et al., 2015. MARVELD2 (DFNB49) mutations in the hearing impaired central European Roma population—prevalence, clinical impact and the common origin. PLoS ONE, 10(4):e0124232. https://doi.org/10.1371/journal.pone.0124232CrossRefGoogle Scholar
  11. Morton CC, Nance WE, 2006. Newborn hearing screening—a silent revolution. New Engl J Med, 354(20):2151–2164. https://doi.org/10.1056/NEJMra050700CrossRefGoogle Scholar
  12. Nayak G, Varga L, Trincot C, et al., 2015. Molecular genetics of MARVELD2 and clinical phenotype in Pakistani and Slovak families segregating DFNB49 hearing loss. Hum Genet, 134(4):423–437. https://doi.org/10.1007/s00439–015–1532–yCrossRefGoogle Scholar
  13. Ng PC, Henikoff S, 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 31(13): 3812–3814. https://doi.org/10.1093/nar/gkg509CrossRefGoogle Scholar
  14. Oda Y, Otani T, Ikenouchi J, et al., 2014. Tricellulin regulates junctional tension of epithelial cells at tricellular contacts through Cdc42. J Cell Sci, 127(Pt 19):4201–4212. https://doi.org/10.1242/jcs.150607CrossRefGoogle Scholar
  15. Raleigh DR, Marchiando AM, Zhang Y, et al., 2010. Tight junction–associated marvel proteins MarvelD3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell, 21(7):1200–1213. https://doi.org/10.1091/mbc.E09–08–0734CrossRefGoogle Scholar
  16. Ramzan K, Shaikh RS, Ahmad J, et al., 2005. A new locus for nonsyndromic deafness DFNB49 maps to chromosome 5q12.3–q14.1. Hum Genet, 116(1–2): 17–22. https://doi.org/10.1007/s00439–004–1205–8CrossRefGoogle Scholar
  17. Riazuddin S, Ahmed ZM, Fanning AS, et al., 2006. Tricellulin is a tight–junction protein necessary for hearing. Am J Hum Genet, 79(6):1040–1051. https://doi.org/10.1086/510022CrossRefGoogle Scholar
  18. Šafka Brožková D, Laštůvková J, Štěpánková H, et al., 2012. DFNB49 is an important cause of non–syndromic deafness in Czech Roma patients but not in the general Czech population. Clin Genet, 82(6):579–582. https://doi.org/10.1111/j.1399–0004.2011.01817.xCrossRefGoogle Scholar
  19. Schraders M, Ruiz–Palmero L, Kalay E, et al., 2012. Mutations of the gene encoding otogelin are a cause of autosomalrecessive nonsyndromic moderate hearing impairment. Am J Hum Genet, 91(5):883–889. https://doi.org/10.1016/j.ajhg.2012.09.012CrossRefGoogle Scholar
  20. Smith RJH, Bale JF Jr, White KR, 2005. Sensorineural hearing loss in children. Lancet, 365(9462):879–890. https://doi.org/10.1016/S0140–6736(05)71047–3CrossRefGoogle Scholar
  21. Sterkers O, Ferrary E, Amiel C, 1988. Production of inner ear fluids. Physiol Rev, 68(4):1083–1128. https://doi.org/10.1152/physrev.1988.68.4.1083CrossRefGoogle Scholar
  22. Teng S, Michonova–Alexova E, Alexov E, 2008. Approaches and resources for prediction of the effects of nonsynonymous single nucleotide polymorphism on protein function and interactions. Curr Pharm Biotechnol, 9(2): 123–133. https://doi.org/10.2174/138920108783955164CrossRefGoogle Scholar
  23. Wang Y, Virtanen J, Xue ZD, et al., 2017. I–TASSER–MR: automated molecular replacement for distant–homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Res, 45(W1): W429–W434. https://doi.org/10.1093/nar/gkx349CrossRefGoogle Scholar
  24. Yang JY, Zhang Y, 2015. I–TASSER server: new development for protein structure and function predictions. Nucleic Acids Res, 43(W1): W174–W181. https://doi.org/10.1093/nar/gkv342Google Scholar
  25. Yang JY, Yan RX, Roy A, et al., 2015. The I–TASSER suite: protein structure and function prediction. Nat Methods, 12(1):7–8. https://doi.org/10.1038/nmeth.3213CrossRefGoogle Scholar
  26. Zheng J, Ying ZB, Cai ZY, et al., 2015. GJB2 mutation spectrum and genotype–phenotype correlation in 1067 Han Chinese subjects with non–syndromic hearing loss. PLoS ONE, 10(6):e0128691. https://doi.org/10.1371/journal.pone.0128691CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Medical Genetics and Genomics, the Children’s HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Institute of GeneticsZhejiang UniversityHangzhouChina
  3. 3.Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhouChina

Personalised recommendations