Advertisement

Journal of Zhejiang University-SCIENCE B

, Volume 20, Issue 2, pp 111–115 | Cite as

Blast-induced hearing loss

  • Kunio MizutariEmail author
Perspective
  • 39 Downloads

Abstract

The incidence of blast injury has increased recently. As the ear is the organ most sensitive to blast overpressure, the most frequent injuries seen after blast exposure are those affecting the ear. Blast overpressure affecting the ear results in sensorineural hearing loss, which is untreatable and often associated with a decline in the quality of life. Here, we review recent cases of blast-induced hearing dysfunction. The tympanic membrane is particularly sensitive to blast pressure waves, since such waves exert forces mainly at air–tissue interfaces within the body. However, treatment of tympanic membrane perforation caused by blast exposure is more difficult than that caused by other etiologies. Sensorineural hearing dysfunction after blast exposure is caused mainly by stereociliary bundle disruption on the outer hair cells. Also, a reduction in the numbers of synaptic ribbons in the inner hair cells and spiral ganglion cells is associated with hidden hearing loss, which is strongly associated with tinnitus or hyperacusis.

爆震性听力损失

摘 要

近年来爆震性损伤的发生率逐渐上升。 由于耳朵是对爆炸压力最敏感的器官, 因此它在爆震性损伤中最易受累。 爆炸压力造成的耳朵损害主要是不可逆的感音神经性耳聋, 进而导致生活质量的下降。 我们在本文回顾了近年来爆震性听力损失的一些病例。 鼓膜对爆炸压力波特别敏感, 因为在体内这种压力波主要在空气—组织交界面释放能量。 然而, 由爆炸引起的鼓膜穿孔比其他原因引起的更难以治疗。 爆炸压力能破坏内耳外毛细胞上的纤毛束, 从而引起感音神经性耳聋。 同时, 内毛细胞的神经突触和螺旋节细胞的减少会引起隐性听力损失, 从而引起耳鸣和听觉过敏。

关键词

爆震性损害 隐性听力损失 感音神经性耳聋 纤毛 鼓膜穿孔 

Notes

Acknowledgements

The author is deeply grateful to Dr. Katsuki NIWA and Dr. Takaomi KURIOKA at National Defense Medical College, Saitama, Japan for their assistance.

References

  1. Chandler, D.W., Edmond, C.V., 1997. Effects of blast over-pressure on the ear: case reports. J. Am. Acad. Audiol., 8(2): 81–88.Google Scholar
  2. Cho, S.I., Gao, S.S., Xia, A., et al., 2013. Mechanisms of hearing loss after blast injury to the ear. PLoS ONE, 8(7): e67618. https://doi.org/10.1371/journal.pone.0067618CrossRefGoogle Scholar
  3. Cullis, I.G., 2001. Blast waves and how they interact with structures. J. R. Army Med. Corps, 147(1): 16–26. https://doi.org/10.1136/jramc-147-01-02CrossRefGoogle Scholar
  4. DePalma, R.G., Burris, D.G., Champion, H.R., et al., 2005. Blast injuries. N. Engl. J. Med., 352(13): 1335–1342. https://doi.org/10.1056/NEJMra042083CrossRefGoogle Scholar
  5. Dougherty, A.L., MacGregor, A.J., Han, P.P., et al., 2013. Blast-related ear injuries among U.S. military personnel. J. Rehabil. Res. Dev., 50(6): 893–904. https://doi.org/10.1682/JRRD.2012.02.0024CrossRefGoogle Scholar
  6. Fausti, S.A., Wilmington, D.J., Gallun, F.J., et al., 2009. Auditory and vestibular dysfunction associated with blastrelated traumatic brain injury. J. Rehabil. Res. Dev., 46(6): 797–810. https://doi.org/10.1682/JRRD.2008.09.0118CrossRefGoogle Scholar
  7. Gallun, F.J., Lewis, M.S., Folmer, R.L., et al., 2012. Implications of blast exposure for central auditory function: a review. J. Rehabil. Res. Dev., 49(7): 1059–1074. https://doi.org/10.1682/JRRD.2010.09.0166CrossRefGoogle Scholar
  8. Gutierrez de Ceballos, J.P., Turégano Fuentes, F., Perez Diaz, D., et al., 2005. Casualties treated at the closest hospital in the Madrid, March 11, terrorist bombings. Crit. Care Med., 33(1 Suppl.): S107–S112. https://doi.org/10.1097/01.CCM.0000151072.17826.72CrossRefGoogle Scholar
  9. Halford, J.B.S., Anderson, S.D., 1991. Anxiety and depression in tinnitus sufferers. J. Psychosom. Res., 35(4–5): 383–390. https://doi.org/10.1016/0022-3999(91)90033-KCrossRefGoogle Scholar
  10. Hickox, A.E., Liberman, M.C., 2014. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J. Neurophysiol., 111(3): 552–564. https://doi.org/10.1152/jn.00184.2013CrossRefGoogle Scholar
  11. Kronenberg, J., Ben-Shoshan, J., Wolf, M., 1993. Perforated tympanic membrane after blast injury. Am. J. Otol., 14(1): 92–94.Google Scholar
  12. Kujawa, S.G., Liberman, M.C., 2009. Adding insult to injury: cochlear nerve degeneration after “temporary” noiseinduced hearing loss. J. Neurosci., 29(45): 14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009CrossRefGoogle Scholar
  13. Kurioka, T., Matsunobu, T., Niwa, K., et al., 2014. Characteristics of laser-induced shock wave injury to the inner ear of rats. J. Biomed. Opt., 19(12): 125001. https://doi.org/10.1117/1.JBO.19.12.125001CrossRefGoogle Scholar
  14. Langguth, B., 2011. A review of tinnitus symptoms beyond ‘ringing in the ears’: a call to action. Curr. Med. Res. Opin., 27(8): 1635–1643. https://doi.org/10.1185/03007995.2011.595781CrossRefGoogle Scholar
  15. Lew, H.L., Jerger, J.F., Guillory, S.B., et al., 2007. Auditory dysfunction in traumatic brain injury. J. Rehabil. Res. Dev., 44(7): 921–928. https://doi.org/10.1682/JRRD.2007.09.0140CrossRefGoogle Scholar
  16. Lou, Z.C., Lou, Z.H., Zhang, Q.P., 2012. Traumatic tympanic membrane perforations: a study of etiology and factors affecting outcome. Am. J. Otolaryngol., 33(5): 549–555. https://doi.org/10.1016/j.amjoto.2012.01.010CrossRefGoogle Scholar
  17. Mao, J.C., Pace, E., Pierozynski, P., et al., 2012. Blast-induced tinnitus and hearing loss in rats: behavioral and imaging assays. J. Neurotrauma, 29(2): 430–444. https://doi.org/10.1089/neu.2011.1934CrossRefGoogle Scholar
  18. Mrena, R., Savolainen, S., Pirvola, U., et al., 2004. Characteristics of acute acoustical trauma in the Finnish Defence Forces. Int. J. Audiol., 43(3): 177–181. https://doi.org/10.1080/14992020400050025CrossRefGoogle Scholar
  19. Niwa, K., Mizutari, K., Matsui, T., et al., 2016. Pathophysiology of the inner ear after blast injury caused by laserinduced shock wave. Sci. Rep., 6: 31754. https://doi.org/10.1038/srep31754CrossRefGoogle Scholar
  20. Owens, B.D., Kragh, J.F.Jr., Wenke, J.C., et al., 2008. Combat wounds in Operation Iraqi Freedom and Operation Enduring Freedom. J. Trauma, 64(2): 295–299. https://doi.org/10.1097/TA.0b013e318163b875CrossRefGoogle Scholar
  21. Perez, R., Gatt, N., Cohen, D., 2000. Audiometric configurations following exposure to explosions. Arch. Otolaryngol. Head Neck Surg., 126(10): 1249–1252. https://doi.org/10.1001/archotol.126.10.1249CrossRefGoogle Scholar
  22. Persaud, R., Hajioff, D., Wareing, M., et al., 2003. Otological trauma resulting from the Soho Nail Bomb in London, April 1999. Clin. Otolaryngol. Allied Sci., 28(3): 203–206. https://doi.org/10.1046/j.1365-2273.2003.00688.xCrossRefGoogle Scholar
  23. Plack, C.J., Barker, D., Prendergast, G., 2014. Perceptual consequences of “hidden” hearing loss. Trends Hear., 18: 1–11. https://doi.org/10.1177/2331216514550621Google Scholar
  24. Remenschneider, A.K., Lookabaugh, S., Aliphas, A., et al., 2014. Otologic outcomes after blast injury: the Boston Marathon experience. Otol. Neurotol., 35(10): 1825–1834. https://doi.org/10.1097/MAO.0000000000000616CrossRefGoogle Scholar
  25. Sato, S., Kawauchi, S., Okuda, W., et al., 2014. Real-time optical diagnosis of the rat brain exposed to a laserinduced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia. PLoS ONE, 9(1): e82891. https://doi.org/10.1371/journal.pone.0082891CrossRefGoogle Scholar
  26. Satoh, Y., Sato, S., Saitoh, D., et al., 2010. Pulmonary blast injury in mice: a novel model for studying blast injury in the laboratory using laser-induced stress waves. Lasers Surg. Med., 42(4): 313–318. https://doi.org/10.1002/lsm.20899CrossRefGoogle Scholar
  27. Saunders, G.H., Frederick, M.T., Arnold, M., et al., 2015. Auditory difficulties in blast-exposed veterans with clinically normal hearing. J. Rehabil. Res. Dev., 52(3): 343–360. https://doi.org/10.1682/JRRD.2014.11.0275CrossRefGoogle Scholar
  28. Schaette, R., McAlpine, D., 2011. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J. Neurosci., 31(38): 13452–13457. https://doi.org/10.1523/JNEUROSCI.2156-11.2011CrossRefGoogle Scholar
  29. Schaette, R., Turtle, C., Munro, K.J., 2012. Reversible induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS ONE, 7(6): e35238. https://doi.org/10.1371/journal.pone.0035238CrossRefGoogle Scholar
  30. Shah, A., Ayala, M., Capra, G., et al., 2014. Otologic assessment of blast and nonblast injury in returning middle eastdeployed service members. Laryngoscope, 124(1): 272–277. https://doi.org/10.1002/lary.24169CrossRefGoogle Scholar
  31. Sridhara, S.K., Rivera, A., Littlefield, P., 2013. Tympanoplasty for blast-induced perforations: the Walter Reed experience. Otolaryngol. Head Neck Surg., 148(1): 103–107. https://doi.org/10.1177/0194599812459326CrossRefGoogle Scholar
  32. Turner, J.G., Brozoski, T.J., Bauer, C.A., et al., 2006. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav. Neurosci., 120(1): 188–195. https://doi.org/10.1037/0735-7044.120.1.188CrossRefGoogle Scholar
  33. Wang, H., Yin, S., Yu, Z., et al., 2011. Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure. Biochem. Biophys. Res. Commun., 409(4): 616–621. https://doi.org/10.1016/j.bbrc.2011.05.049CrossRefGoogle Scholar
  34. Wang, Y., Hirose, K., Liberman, M.C., 2002. Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J. Assoc. Res. Otolaryngol., 3(3): 248–268. https://doi.org/10.1007/s101620020028CrossRefGoogle Scholar
  35. Wolf, S.J., Bebarta, V.S., Bonnett, C.J., et al., 2009. Blast injuries. Lancet, 374(9687): 405–415. https://doi.org/10.1016/S0140-6736(09)60257-9CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Otolaryngology, Head and Neck SurgeryNational Defense Medical CollegeSaitamaJapan

Personalised recommendations